ГОССТРОЙ СССР

СТРОИТЕЛЬНЫЕ НОРМЫ И ПРАВИЛА

СНиП II-23-81*

Часть II
Нормы проектирования

Глава 23
Стальные конструкции

Утверждены
постановлением Госстроя СССР
от 14 августа 1981 г. № 144

Москва
Центральны институт
типового проектирования

1990

РАЗРАБОТАНЫ ЦНИИСК им. Кучеренко с участием ЦНИИпроектстальконструкции Госстроя СССР, МИСИ им. В.В. Кубышева Минвуза СССР, института «Энергосетьпроект» и СКБ «Мосгидросталь» Минэнерго СССР.

Настоящие нормы разработаны в развитие ГОСТ 27751-88 «Надежность строительных конструкци и основани. Основные положения по расчету» и СТ СЭВ 3972-83 «Надежность строительных конструкци и основани. Конструкции стальные. Основные положения по расчету».

С введением в дествие настоящих строительных норм и правил утрачивают силу:

СНиП II.3-72 «Стальные конструкции. Нормы проектирования»;

изменения СНиП II.3-72 «Стальные конструкции. Нормы проектирования», утвержденные постановлениями Госстроя СССР:

№ 150 от 12 сентября 1975 г.;

№ 94 от 24 июня 1976 г.;

№ 211 от 31 октября 1978 г.;

№ 250 от 27 декабря 1978 г.;

№ 2 от 25 января 1980 г.;

№ 104 от 14 июля 1980 г.;

№ 130 от 31 июля 1981 г.;

СНиП II-И.9-62 «Линии электропередачи напряжением выше 1 кВ. Нормы проектирования» (раздел «Проектирование стальных конструкци опор воздушных лини электропередачи»);

изменения СНиП II-И.9-62 «Линии электропередачи напряжением выше 1 кВ. Нормы проектирования», утвержденные постановлением Госстроя СССР от 10 апреля 1975 г.;

«Указания по проектированию металлических конструкци антенных сооружени объектов связи» (СН 376-67).

В СНиП II-23-81* внесены изменения, утвержденные постановлениями Госстроя СССР № 120 от 25 июля 1984 г., № 218 от 11 декабря 1985 г., № 69 от 29 декабря 1986 г., № 132 от 8 июля 1988 г., № 121 от 12 июля 1989 г.

Основные буквенные обозначения приведены в прил. 9*.

Разделы, пункты, таблицы, формулы, приложения и подписи к рисункам, в которые внесены изменения, отмечены в настоящих строительных нормах и правилах звездочко.

Редакторы - инженеры Ф.М. Шлемин, В.П. Поддубны осстро СССР), д-р техн. наук проф. В.А. Балдин, канд. техн. наук Г.Е. Вельски (ЦНИИСК Госстроя СССР), инж. Е.М. Бухарин («Энергосетьпроект» Минэнерго СССР), инж. Н.В. Шевелев (СКБ «Мосгидросталь» Минэнерго СССР).

При пользовании нормативным документом следует учитывать утвержденные изменения строительных норм и правил и государственных стандартов, публикуемые в журнале «Бюллетень строительно техники», «Сборнике изменени к строительным нормам и правилам» Госстроя СССР и информационном указателе «Государственные стандарты СССР» Госстандарта СССР.

Госстро СССР

Строительные нормы и правила

СНиП II-23-81*

Стальные конструкции

Взамен СНиП II-В.3-72; СНиП II.9-62; СН 376-67

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Настоящие нормы следует соблюдать при проектировании стальных строительных конструкци здани и сооружени различного назначения.

Нормы не распространяются на проектирование стальных конструкци мостов, транспортных тоннеле и труб под насыпями.

При проектировании стальных конструкци, находящихся в особых условиях эксплуатации (например, конструкци доменных пече, магистральных и технологических трубопроводов, резервуаров специального назначения, конструкци здани, подвергающихся сесмическим, интенсивным температурным воздествиям или воздествиям агрессивных сред, конструкци морских гидротехнических сооружени), конструкци уникальных здани и сооружени, а также специальных видов конструкци (например, предварительно напряженных, пространственных, висячих) следует соблюдать дополнительные требования, отражающие особенности работы этих конструкци, предусмотренные соответствующими нормативными документами, утвержденными или согласованными Госстроем СССР.

1.2. При проектировании стальных конструкци следует соблюдать нормы СНиП по защите строительных конструкци от коррозии и противопожарные нормы проектирования здани и сооружени. Увеличение толщины проката и стенок труб с целью защиты конструкци от коррозии и повышения предела огнестокости конструкци не допускается.

Все конструкции должны быть доступны для наблюдения, очистки, окраски, а также не должны задерживать влагу и затруднять проветривание. Замкнутые профили должны быть герметизированы.

1.3*. При проектировании стельных конструкци следует:

выбирать оптимальные в технико-экономическом отношении схемы сооружени и сечения элементов;

применять экономичные профили проката и эффективные стали;

применять для здани и сооружени, как правило, унифицированные типовые или стандартные конструкции;

применять прогрессивные конструкции (пространственные системы из стандартных элементов; конструкции, совмещающие несущие и ограждающие функции; предварительно напряженные, вантовые, тонколистовые и комбинированные конструкции из разных стале);

предусматривать технологичность изготовления и монтажа конструкци;

применять конструкции, обеспечивающие наименьшую трудоемкость их изготовления, транспортирования и монтажа;

предусматривать, как правило, поточное изготовление конструкци и их конвеерны или крупноблочны монтаж;

предусматривать применение заводских соединени прогрессивных типов (автоматическо и полуавтоматическо сварки, соединени фланцевых, с фрезерованными торцами, на болтах, в том числе на высокопрочных и др.);

предусматривать, как правило, монтажные соединения на болтах, в том числе на высокопрочных; сварные монтажные соединения допускаются при соответствующем обосновании;

выполнять требования государственных стандартов на конструкции соответствующего вида.

1.4. При проектировании здани и сооружени необходимо принимать конструктивные схемы, обеспечивающие прочность, усточивость и пространственную неизменяемость здани и сооружени в целом, а также их отдельных элементов при транспортировании, монтаже и эксплуатации.

1.5*. Стали и материалы соединени, ограничения по применению стале С345Т и С375Т, а также дополнительные требования к поставляемо стали, предусмотренные государственными стандартами и стандартами СЭВ или техническими условиями, следует указывать в рабочих (КМ) и деталировочных (КМД) чертежах стальных конструкци и в документации на заказ материалов.

В зависимости от особенносте конструкци и их узлов необходимо при заказе стали указывать класс сплошности по ГОСТ 27772-88.

1.6*. Стальные конструкции и их расчет должны удовлетворять требованиям ГОСТ 27751-88 «Надежность строительных конструкци и основани. Основные положения по расчету» и СТ СЭВ 3972-83 «Надежность строительных конструкци и основани. Конструкции стальные. Основные положения по расчету».

1.7. Расчетные схемы и основные предпосылки расчета должны отражать дествительные условия работы стальных конструкци.

Внесены

ЦНИИСК им. Кучеренко

Госстроя СССР

Утверждены

Постановлением Госстроя СССР

от 14 августа 1981 г. № 144

Срок введения

в дествие

1 января 1982 г.

Стальные конструкции следует, как правило, рассчитывать как единые пространственные системы.

При разделении единых пространственных систем на отдельные плоские конструкции следует учитывать взаимодествие элементов между собо и с основанием.

Выбор расчетных схем, а также методов расчета стальных конструкци необходимо производить с учетом эффективного использования ЭВМ.

1.8. Расчет стальных конструкци следует, как правило, выполнять с учетом неупругих деформаци стали.

Для статически неопределимых конструкци, методика расчета которых с учетом неупругих деформаци стали не разработана, расчетные усилия (изгибающие и крутящие моменты, продольные и поперечные силы) следует определять в предположении упругих деформаци стали по недеформированно схеме.

При соответствующем технико-экономическом обосновании расчет допускается производить по деформированно схеме, учитывающе влияние перемещени конструкци под нагрузко.

1.9. Элементы стальных конструкци должны иметь минимальные сечения, удовлетворяющие требованиям настоящих норм с учетом сортамента на прокат и трубы. В составных сечениях, устанавливаемых расчетом, недонапряжение не должно превышать 5 %.

2. МАТЕРИАЛЫ ДЛЯ КОНСТРУКЦИЙ И СОЕДИНЕНИЙ

2.1*. В зависимости от степени ответственности конструкци здани и сооружени, а также от услови их эксплуатации все конструкции разделяются на четыре группы. Стали для стальных конструкци здани и сооружени следует принимать по табл. 50*.

Стали для конструкци, возводимых в климатических раонах I1, I2, II2 и II3, но эксплуатируемых в отапливаемых помещениях, следует принимать как для климатического раона II4 согласно табл. 50*, за исключением стали С245 и С275 для конструкци группы 2.

Для фланцевых соединени и рамных узлов следует применять прокат по ТУ 14-1-4431-88.

2.2*. Для сварки стальных конструкци следует применять: электроды для ручно дугово сварки по ГОСТ 9467-75*; сварочную проволоку по ГОСТ 2246-70*; флюсы по ГОСТ 9087-81*; углекислы газ по ГОСТ 8050-85.

Применяемые сварочные материалы и технология сварки должны обеспечивать значение временного сопротивления металла шва не ниже нормативного значения временного сопротивления Run основного металла, а также значения твердости, ударно вязкости и относительного удлинения металла сварных соединени, установленные соответствующими нормативными документами.

2.3*. Отливки (опорные части и т.п.) для стальных конструкци следует проектировать из углеродисто стали марок 15Л, 25Л, 35Л и 45Л, удовлетворяюще требованиям для групп отливок II или III по ГОСТ 977-75*, а также из серого чугуна марок СЧ15, СЧ20, СЧ25 и СЧ30, удовлетворяющего требованиям ГОСТ 1412-85.

2.4*. Для болтовых соединени следует применять стальные болты и гаки, удовлетворяющие требованиям ГОСТ 1759.0-87*, ГОСТ 1759.4-87* и ГОСТ 1759.5-87* и шабы, удовлетворяющие требованиям ГОСТ 18123-82*.

Болты следует назначать по табл. 57* и ГОСТ 15589-70*, ГОСТ 15591-70*, ГОСТ 7796-70*, ГОСТ 7798-70*, а при ограничении деформаци соединени - по ГОСТ 7805-70*.

Гаки следует применять по ГОСТ 5915-70*: для болтов классов прочности 4.6, 4.8, 5.6 и 5.8 - гаки класса прочности 4; для болтов классов прочности 6.6 и 8.8 - гаки классов прочности соответственно 5 и 6, для болтов класса прочности 10.9 - гаки класса прочности 8.

Шабы следует применять: круглые по ГОСТ 11371-78*, косые по ГОСТ 10906-78* и пружинные нормальные по ГОСТ 6402-70*.

2.5*. Выбор марок стали для фундаментных болтов следует производить по ГОСТ 24379.0-80, а их конструкцию и размеры принимать по ГОСТ 24379.1-80*

Болты (Uбразные) для крепления оттяжек антенных сооружени связи, а также U-образные и фундаментные болты опор воздушных лини электропередачи и распределительных устроств следует применять из стали марок: 09Г2С-8 и 10Г2С1-8 по ГОСТ 19281-73* с дополнительным требованием по ударно вязкости при температуре минус 60 °С не менее 30 Дж / см2 (3 кгс · м/см2) в климатическом раоне I1; 09Г2С-6 и 10Г2С1-6 по ГОСТ 19281-73* в климатических раонах I2, II2 и II3; ВСт3сп2 по ГОСТ 380-71* 1990 г. Ст3сп2-1 по ГОСТ 535-88) во всех остальных климатических раонах.

2.6*. Гаки для фундаментных и U-образных болтов следует применять:

для болтов из стали марок ВСт3сп2 и 20 - класса прочности 4 по ГОСТ 1759.5-87*;

для болтов из стали марок 09Г2С и 10Г2С1 -класса прочности не ниже 5 по ГОСТ 1759.5-87*. Допускается применять гаки из марок стали, принимаемых для болтов.

Гаки для фундаментных и Uбразных болтов диаметром менее 48 мм следует применять по ГОСТ 5915-70*, для болтов диаметром более 48 мм - по ГОСТ 10605-72*.

2.7*. Высокопрочные болты следует применять по ГОСТ 22353-77*, ГОСТ 22356-77* и ТУ 14-4-1345-85; гаки и шабы к ним - по ГОСТ 22354-77* и ГОСТ 22355-77*.

2.8*. Для несущих элементов висячих покрыти, оттяжек опор ВЛ и ОРУ, мачт и башен, а также напрягаемых элементов в предварительно напряженных конструкциях следует применять:

канаты спиральные по ГОСТ 3062-80*; ГОСТ 3063-80*; ГОСТ 3064-80*;

канаты двоно свивки по ГОСТ 3066-80*; ГОСТ 3067-74*; ГОСТ 3068-74*; ГОСТ 3081-80*; ГОСТ 7669-80*; ГОСТ 14954-80*;

канаты закрытые несущие по ГОСТ 3090-73*; ГОСТ 18900-73*; ГОСТ 18901-73*; ГОСТ 18902-73*; ГОСТ 7675-73*; ГОСТ 7676-73*;

пучки и пряди параллельных проволок, формируемых из канатно проволоки, удовлетворяюще требованиям ГОСТ 7372-79*.

2.9. Физические характеристики материалов, применяемых для стальных конструкци, следует принимать согласно прил. 3.

3. РАСЧЕТНЫЕ ХАРАКТЕРИСТИКИ МАТЕРИАЛОВ И СОЕДИНЕНИЙ

3.1*. Расчетные сопротивления проката, гнутых профиле и труб для различных видов напряженных состояни следует определять по формулам, приведенным в табл. 1*.

3.2*. Значения коэффициентов надежности по материалу проката, гнутых профиле и труб следует принимать по табл. 2*.

Расчетные сопротивления при растяжении, сжатии и изгибе листового, широкополосного универсального и фасонного проката приведены в табл. 51*, труб - в табл. 51, а. Расчетные сопротивления гнутых профиле следует принимать равными расчетным сопротивлениям листового проката, из которого они изготовлены, при этом допускается учитывать упрочнение стали листового проката в зоне гиба.

Расчетные сопротивления круглого, квадратного и полосового проката следует определять по табл. 1*, принимая значения Ryn и Run равными соответственно пределу текучести и временному сопротивлению по ТУ 14-1-3023-80, ГОСТ 380-71** (с 1990 г. ГОСТ 535-88) и ГОСТ 19281-73*.

Таблица 1*

Напряженное состояние

Условное обозначение

Расчетные сопротивления проката и труб

Растяжение, сжатие и изгиб

По пределу текучести

Ry

Ry = Ryn / γn

По временному сопротивлению

Ru

Ru = Run / γm

Сдвиг

Rs

Rs = 0,58 Ryn / γm

Смятие торцево поверхности (при наличии пригонки)

Rp

Rp = Run / γm

Смятие местное в цилиндрических шарнирах (цапфах) при плотном касании

Rlp

Rlp = 0,5 Run / γm

Диаметральное сжатие катков (при свободном касании в конструкциях с ограниченно подвижностью)

Rcd

Rcd = 0,025 Run / γm

Обозначение, принятое в табл. 1*:

γm - коэффициент надежности по материалу, определяемы в соответствии с п. 3.2*.

(Поправка. Письмо от 17.11.2008)

Таблица 2*

Государственны стандарт или технические условия на прокат

Коэффициент надежности по материалу γт

ГОСТ 27772-88 (кроме стале С590, С590К); ТУ 14-1-3023-80 (для круга, квадрата, полосы)

1,025

ГОСТ 27772-88 (стали С590, С590К); ГОСТ 380-71** (для круга и квадрата размерами, отсутствующими в ТУ 14-1-3023-80); ГОСТ 19281-73* ля круга и квадрата с пределом текучести до 380 МПа (39 кгс/мм2) и размерами, отсутствующими в ТУ 14-1-3023-80]; ГОСТ 10705-80*; ГОСТ 10706-76*

1,050

ГОСТ 19281-73* ля круга и квадрата с пределом текучести свыше 380 МПа (39 кгс/мм2) и размерами, отсутствующими в ТУ 14-1-3023-80]; ГОСТ 8731-87; ТУ 14-3-567-76

1,100

Расчетные сопротивления проката смятию торцево поверхности, местному смятию в цилиндрических шарнирах и диаметральному сжатию катков приведены в табл. 52*.

3.3. Расчетные сопротивления отливок из углеродисто стали и серого чугуна следует принимать по табл. 53 и 54.

3.4. Расчетные сопротивления сварных соединени для различных видов соединени и напряженных состояни следует определять по формулам, приведенным в табл. 3.

Таблица 3

Сварные соединения

Напряженное состояние

Условное обозначение

Расчетные сопротивления сварных соединени

Стыковые

Сжатие. Растяжение и изгиб при автоматическо, полуавтоматическо или ручно сварке с физическим контролем качества швов

По пределу текучести

Rwy

Rwy = Ry

По временному сопротивлению

Rwu

Rwu = Ru

Растяжение и изгиб при автоматическо, полуавтоматическо или ручно сварке

По пределу текучести

Rwy

Rwy = 0,85 Ry

Сдвиг

Rws

Rws = Rs

С угловыми швами

Срез (условны)

По металлу шва

Rwf

По металлу границы сплавления

Rwz

Rwz = 0,45 Run

Примечания: 1. Для швов, выполняемых ручно сварко, значения Rwun следует принимать равными значениям временного сопротивления разрыву металла шва, указанным в ГОСТ 9467-75*.

2. Для швов, выполняемых автоматическо или полуавтоматическо сварко, значения Rwun следует принимать по табл. 4* настоящих норм.

3. Значения коэффициента надежности по материалу шва γwm следует принимать равными: 1,25 - при значениях Rwun не более 490 МПа (5000 кгс/см2); 1,35 - при значениях Rwun 590 МПа (6000 кгс/см2) и более.

Расчетные сопротивления стыковых соединени элементов из стале с разными нормативными сопротивлениями следует принимать как для стыковых соединени из стали с меньшим значением нормативного сопротивления.

Расчетные сопротивления металла швов сварных соединени с угловыми швами приведены в табл. 56.

3.5. Расчетные сопротивления одноболтовых соединени следует определять по формулам, приведенным в табл. 5*.

Расчетные сопротивления срезу и растяжению болтов приведены в табл. 58*, смятию элементов, соединяемых болтами, - в табл. 59*.

3.6*. Расчетное сопротивление растяжению фундаментных болтов Rba следует определять по формуле

Rba = 0,5R.                                                          (1)

Расчетное сопротивление растяжению Uбразных болтов Rbv, указанных в п. 2.5*, следует определять по формуле

Rbv = 0,45 Run.                                                     (2)

Расчетные сопротивления растяжению фундаментных болтов приведены в табл. 60*.

3.7. Расчетное сопротивление растяжению высокопрочных болтов Rbh следует определять по формуле

Rbh = 0,7 Rbun,                                                      (3)

где Rbun - наименьшее временное сопротивление болта разрыву, принимаемое по табл. 61*.

3.8. Расчетное сопротивление растяжению высокопрочно стально проволоки Rdh, применяемо в виде пучков или пряде, следует определять по формуле

Rdh = 0,63 Run.                                                     (4)

Таблица 4*

Марки проволоки (по ГОСТ 2246-70*) для автоматическо или полуавтоматическо сварки

Марки порошково проволоки (по ГОСТ 26271-84)

Значения нормативного сопротивления металла шва Rwun, МПа (кгс/см2)

под флюсом (ГОСТ 9087-81*)

в углекислом газе (по ГОСТ 8050-85) или в его смеси с аргоном (по ГОСТ 10157-79*)

Св-08, Св-08А

-

-

410 (4200)

Св-08ГА

-

-

450 (4600)

Св-10ГА

Св-08Г2С

ПП-АН8, ПП-АН3

490 (5000)

Св-10НМА, Св-10Г2

Св-08Г2С*

-

590 (6000)

Св-08ХН2ГМЮ,

Св-08Х1ДЮ

Св-10ХГМА,

Св-08ХГ2СДЮ

-

685 (7000)

* При сварке проволоко Св-08Г2С значение Rwun следует принимать равным 590 МПа (6000 кгс/см2) только для угловых швов с катетом kf 8 мм в конструкциях из стали с пределом текучести 440 МПа (4500 кгс/см2) и более.

Таблица 5*

Напряженное состояние

Условное обозначение

Расчетные сопротивления одноболтовых соединени

срезу и растяжению болтов классов

смятию соединяемых элементов из стали с пределом текучести до 440 МПа (4500 кгс/см2)

4.6; 5.6; 6.6

4.8; 5.8

8.8; 10.9

Срез

Rbs

Rbs = 0,38 Rbun

Rbs = 0,4 Rbun

Rbs = 0,4 Rbun

-

Растяжение

Rbt

Rbt = 0,42 Rbun

Rbt = 0,4 Rbun

Rbt = 0,5 Rbun

-

Смятие:

Rbp

 

 

 

 

а) болты класса точности А

-

-

-

б) болты класса точности В и С

-

-

-

Примечание. Допускается применять высокопрочные болты без регулируемого натяжения из стали марки 40Х «селект», при этом расчетные сопротивления Rbs и Rbt следует определять как для болтов класса 10.9, а расчетное сопротивление Rbp как для болтов класса точности В и С.

Высокопрочные болты по ТУ 14-4-1345-85 допускается применять только при их работе на растяжение.

3.9. Значение расчетного сопротивления (усилия) растяжению стального каната следует принимать равным значению разрывного усилия каната в целом, установленному государственными стандартами или техническими условиями на стальные канаты, деленному на коэффициент надежности γm = 1,6.

4*. УЧЕТ УСЛОВИЙ РАБОТЫ И НАЗНАЧЕНИЯ КОНСТРУКЦИЙ

При расчете конструкци и соединени следует учитывать:

коэффициенты надежности по назначению γn, принимаемые согласно Правилам учета степени ответственности здани и сооружени при проектировании конструкци;

коэффициент надежности γu = 1,3 для элементов конструкци, рассчитываемых на прочность с использованием расчетных сопротивлени Ru;

коэффициенты услови работы γc и коэффициенты услови работы соединения γb, принимаемые по табл. 6* и 35* разделам настоящих норм по проектированию здани, сооружени и конструкци, а также по прил. 4*.

Таблица 6*

Элементы конструкци

Коэффициенты услови работы γс

1. Сплошные балки и сжатые элементы ферм перекрыти под залами театров, клубов, кинотеатров, под трибунами, под помещениями магазинов, книгохранилищ и архивов и т.п. при весе перекрыти, равном или большем временно нагрузки

0,9

2. Колонны общественных здани и опор водонапорных башен

0,95

3. Сжатые основные элементы роме опорных) решетки составного таврового сечения из уголков сварных ферм покрыти и перекрыти (например, стропильных и аналогичных им ферм) при гибкости λ 60

0,8

4. Сплошные балки при расчетах на общую усточивость при φb < 1,0

0,95

5. Затяжки, тяги, оттяжки, подвески, выполненные из прокатно стали

0,9

6. Элементы стержневых конструкци покрыти и перекрыти:

 

а) сжатые (за исключением замкнутых трубчатых сечени) при расчетах на усточивость

0,95

б) растянутые в сварных конструкциях

0,95

в) растянутые, сжатые, а также стыковые накладки в болтовых конструкциях (кроме конструкци на высокопрочных болтах) из стали с пределом текучести до 440 МПа (4500 кгс/см2), несущих статическую нагрузку, при расчетах на прочность

1,05

7. Сплошные составные балки, колонны, а также стыковые накладки из стали с пределом текучести до 440 МПа (4500 кгс/см2), несущие статическую нагрузку и выполненные с помощью болтовых соединени роме соединени на высокопрочных болтах), при расчетах на прочность

1,1

8. Сечения прокатных и сварных элементов, а также накладок из стали с пределом текучести до 440 МПа (4500 кгс/см2) в местах стыков, выполненных на болтах (кроме стыков на высокопрочных болтах), несущих статическую нагрузку, при расчетах на прочность:

 

а) сплошных балок и колонн

1,1

б) стержневых конструкци покрыти и перекрыти

1,05

9. Сжатые элементы решетки пространственных решетчатых конструкци из одиночных равнополочных или неравнополочных (прикрепляемых больше полко) уголков:

 

а) прикрепляемые непосредственно к поясам одно полко сварными швами либо двумя болтами и более, поставленными вдоль уголка:

 

раскосы по рис. 9*, а

0,9

распорки по рис. 9*, б, в

0,9

раскосы по рис. 9*, в, г, д

0,8

б) прикрепляемые непосредственно к поясам одно полко, одним болтом (кроме указанных в поз. 9, в настояще таблицы), а также прикрепляемые через фасонку независимо от вида соединения

0,75

в) при сложно перекрестно решетке с одноболтовыми соединениями по рис. 9*, е

0,7

10. Сжатые элементы из одиночных уголков, прикрепляемые одно полко (для неравнополочных уголков только меньше полко), за исключением элементов конструкци, указанных в поз. 9 настояще таблицы, раскосов по рис. 9*, б, прикрепляемых непосредственно к поясам сварными швами либо двумя болтами и более, поставленными вдоль уголка, и плоских ферм из одиночных уголков

0,75

11. Опорные плиты из стали с пределом текучести до 285 МПа (2900 кгс/см2), несущие статическую нагрузку, толщино, мм:

 

а) до 40

1,2

б) св. 40 до 60

1,15

в)   « 60   «  80

1,1

Примечания: 1. Коэффициенты услови работы γc < 1 при расчете одновременно учитывать не следует.

2. Коэффициенты услови работы, приведенные соответственно в поз. 1 и 6, в; 1 и 7; 1 и 8; 2 и 7; 2 и 8, а; 3 и 6, в, при расчете следует учитывать одновременно.

3. Коэффициенты услови работы, приведенные в поз. 3; 4; 6, а, в; 7; 8; 9 и 10, а также в поз. 5 и 6, б (кроме стыковых сварных соединени), при расчете соединени рассматриваемых элементов учитывать не следует.

4. В случаях, не оговоренных в настоящих нормах, в формулах следует принимать γс = 1.

5. РАСЧЕТ ЭЛЕМЕНТОВ СТАЛЬНЫХ КОНСТРУКЦИЙ НА ОСЕВЫЕ СИЛЫ И ИЗГИБ

ЦЕНТРАЛЬНО-РАСТЯНУТЫЕ И ЦЕНТРАЛЬНО-СЖАТЫЕ ЭЛЕМЕНТЫ

5.1. Расчет на прочность элементов, подверженных центральному растяжению или сжатию сило N, кроме указанных в п. 5.2, следует выполнять по формуле

.                                                               (5)

Расчет на прочность сечени в местах крепления растянутых элементов из одиночных уголков, прикрепляемых одно полко болтами, следует выполнять по формулам (5) и (6) . При этом значение γс в формуле (6) должно приниматься по прил. 4* настоящих норм.

5.2. Расчет на прочность растянутых элементов конструкци из стали с отношением Ru / γu > Ry, эксплуатация которых возможна и после достижения металлом предела текучести, следует выполнять по формуле

.                                                              (6)

5.3. Расчет на усточивость сплошностенчатых элементов, подверженных центральному сжатию сило N, следует выполнять по формуле

.                                                             (7)

Значения φ следует определять по формулам

при 0 <   2,5

;                                            (8)

при 2,5 <  4,5

;                  (9)

при  > 4,5

.                                                         (10)

Численные значения φ приведены в табл. 72.

5.4*. Стержни из одиночных уголков должны рассчитываться на центральное сжатие в соответствии с требованиями, изложенными в п. 5.3. При определении гибкости этих стержне радиус инерции сечения уголка i и расчетную длину lef следует принимать согласно пп. 6.1-6.7.

При расчете поясов и элементов решетки пространственных конструкци из одиночных уголков следует выполнять требования п. 15.10* настоящих норм.

5.5. Сжатые элементы со сплошными стенками открытого П-образного сечения при λх < 3λу, где λx и λy - расчетные гибкости элемента в плоскостях, перпендикулярных осям соответственно х-х и y-y (рис. 1), рекомендуется укреплять планками или решетко, при этом должны быть выполнены требования пп. 5.6 и 5.8*.

При отсутствии планок или решетки такие элементы помимо расчета по формуле (7) следует проверять на усточивость при изгибно-крутильно форме потери усточивости по формуле

,                                                          (11)

где φy - коэффициент продольного изгиба, вычисляемы согласно требованиям п. 5.3;

c - коэффициент, определяемы по формуле

                                               (12)

где ; ;

α = αx / h - относительное расстояние между центром тяжести и центром изгиба.

Здесь ; ;

Jω - секториальны момент инерции сечения;

bi и ti - соответственно ширина и толщина прямоугольных элементов, составляющих сечение.

Для сечения, приведенного на рис. 1, а, значения ,  и α должны определяться по формулам:

; ; ,                           (13)

где β = b / h.

Рис. 1. П-образные сечения элементов

а - открытое; б, в - укрепленные планками или решетко


Таблица 7

Тип сечения

Схема сечения

Приведенные гибкости λef составных стержне сквозного сечения

с планками при

с решетками

Jsl / (Jbb) < 5

Jsl / (Jbb) ≥ 5

1

                                                                    (14)

                                                 (17)

                                                          (20)

2

                                                                        (15)

                                                    (18)

                                                          (21)

3

                                                                    (16)

                                                    (19)

                                                          (22)

Обозначения, принятые в табл. 7:

b -                            расстояние между осями ветве;

l -                             расстояние между центрами планок;

λ -                            наибольшая гибкость всего стержня;

λ1, λ2, λ3 -                гибкости отдельных ветве при изгибе их в плоскостях, перпендикулярных осям соответственно 1-1, 2-2 и 3-3, на участках между приваренными планками (в свету) или между центрами краних болтов;

А -                            площадь сечения всего стержня;

Аd1 и Аd2 -                площади сечени раскосов решеток (при крестово решетке - двух раскосов), лежащих в плоскостях, перпендикулярных осям соответственно 1-1 и 2-2;

Ad -                           площадь сечения раскоса решетки (при крестово решетке - двух раскосов), лежаще в плоскости одно грани (для трехгранного равностороннего стержня);

α1 и α2 -                   коэффициенты, определяемые по формуле

,

где a, b, l -              размеры, определяемые по рис. 2;

n, n1, n2, n3 -           коэффициенты, определяемые соответственно по формулам:

; ; ; ,

здесь Jb1 и Jb3 -      моменты инерции сечения ветве относительно осе соответственно 1-1 и 3-3 (для сечени типов 1 и 3);

Jb1 и Jb2 -                 то же, двух уголков относительно осе соответственно 1-1 и 2-2 (для сечения типа 2);

Js -                            момент инерции сечения одно планки относительно собственно оси х-х (рис. 3);

Js1 и Js2 -                  моменты инерции сечения одно из планок, лежащих в плоскостях, перпендикулярных осям соответственно 1-1 и 2-2 (для сечения типа 2).


5.6. Для составных сжатых стержне, ветви которых соединены планками или решетками, коэффициент φ относительно свободно оси (перпендикулярно плоскости планок или решеток) должен определяться по формулам (8) - (10) с замено в них  на . Значение  следует определять в зависимости от значени λef, приведенных в табл. 7.

В составных стержнях с решетками помимо расчета на усточивость стержня в целом следует проверять усточивость отдельных ветве на участках между узлами.

Гибкость отдельных ветве λ1, λ2 и λ3 на участке между планками должка быть не более 40.

Рис. 2. Схема раскосно решетки

Рис. 3. Составно стержень на планках

При наличии в одно из плоскосте сплошного листа вместо планок (рис. 1, б, в) гибкость ветви должна вычисляться по радиусу инерции полусечения относительно его оси, перпендикулярно плоскости планок.

В составных стержнях с решетками гибкость отдельных ветве между узлами должна быть не более 80 и не должна превышать приведенную гибкость λef стержня в целом. Допускается принимать более высокие значения гибкости ветве, но не более 120, при условии, что расчет таких стержне выполнен по деформированно схеме.

5.7. Расчет составных элементов из уголков, швеллеров и т.п., соединенных вплотную или через прокладки, следует выполнять как сплошностенчатых при условии, что наибольшие расстояния на участках между приваренными планками (в свету) или между центрами краних болтов не превышают:

для сжатых элементов.... 40i

  «    растянутых   «............ 80i

Здесь радиус инерции i уголка или швеллера следует принимать для тавровых или двутавровых сечени относительно оси, параллельно плоскости расположения прокладок, а для крестовых сечени - минимальны.

При этом в пределах длины сжатого элемента следует ставить не менее двух прокладок.

5.8*. Расчет соединительных элементов (планок, решеток) сжатых составных стержне должен выполняться на условную поперечную силу Qfic, принимаемую постоянно по все длине стержня и определяемую по формуле

Qfic = 7,15 · 10-6 (2330 - E / Ry) N / φ,                                          (23)*

где N - продольное усилие в составном стержне;

φ - коэффициент продольного изгиба, принимаемы для составного стержня в плоскости соединительных элементов.

Условную поперечную силу Qfic следует распределять:

при наличии только соединительных планок (решеток) поровну между планками (решетками), лежащими в плоскостях, перпендикулярных оси, относительно которо производится проверка усточивости;

при наличии сплошного листа и соединительных планок (решеток) - пополам между листом и планками (решетками), лежащими в плоскостях, параллельных листу;

при расчете равносторонних трехгранных составных стержне условная поперечная сила, приходящаяся на систему соединительных элементов, расположенных в одно плоскости, должна приниматься равно 0,8Qfic.

5.9. Расчет соединительных планок и их прикрепления (рис. 3) должен выполняться как расчет элементов безраскосных ферм на:

силу F, срезывающую планку, по формуле

F = Qsl / b;                                                           (24)

момент М1, изгибающи планку в ее плоскости, по формуле

М1 = Qsl / 2,                                                         (25)

где Qs - условная поперечная сила, приходящаяся на планку одно грани.

5.10. Расчет соединительных решеток должен выполняться как расчет решеток ферм. При расчете перекрестных раскосов крестово решетки с распорками (рис. 4) следует учитывать дополнительное усилие Nad, возникающее в каждом раскосе от обжатия поясов и определяемое по формуле

,                                                          (26)

где N - усилие в одно ветви стержня;

А - площадь сечения одно ветви;

Ad - площадь сечения одного раскоса;

α - коэффициент, определяемы по формуле

α = al2 / (a3 + 2b3),                                                       (27)

где а, l и b - размеры, указанные на рис. 4.

5.11. Расчет стержне, предназначенных для уменьшения расчетно длины сжатых элементов, должен выполняться на усилие, равное условно поперечно силе в основном сжатом элементе, определяемо по формуле (23)*.

ИЗГИБАЕМЫЕ ЭЛЕМЕНТЫ

5.12. Расчет на прочность элементов (кроме балок с гибко стенко, с перфорированно стенко и подкрановых балок), изгибаемых в одно из главных плоскосте, следует выполнять по формуле

.                                                          (28)

Значения касательных напряжени τ в сечениях изгибаемых элементов должны удовлетворять условию

.                                                       (29)

При наличии ослабления стенки отверстиями для болтов значения τ в формуле (29) следует умножать на коэффициент α, определяемы по формуле

α = a / (a - d),                                                          (30)

где а - шаг отверсти;

d - диаметр отверстия.

5.13. Для расчета на прочность стенки балки в местах приложения нагрузки к верхнему поясу, а также в опорных сечениях балки, не укрепленных ребрами жесткости, следует определять местное напряжение σloc по формуле

,                                                       (31)

где F - расчетное значение нагрузки (силы);

lef - условная длина распределения нагрузки, определяемая в зависимости от услови опирания; для случая опирания по рис. 5

lef = b + 2tf,                                                              (32)

где tf - толщина верхнего пояса балки, если нижняя балка сварная (рис 5, а), или расстояние от наружно грани полки до начала внутреннего закругления стенки, если нижняя балка прокатная (рис 5, б).

Рис. 4. Схема крестово решетки с распорками

Рис. 5. Схемы для определения длины распределения нагрузки на балку

а - сварную; б - прокатную

5.14*. Для стенок балок, рассчитываемых по формуле (28), должны выполняться условия

; τxyRsγc,                                  (33)

где  - нормальные напряжения в срединно плоскости стенки, параллельные оси балки;

σу - то же, перпендикулярные оси балки, в том числе σloc, определяемое по формуле (31);

τху - касательное напряжение, вычисляемое по формуле (29) с учетом формулы (30).

Напряжения σх и σу, принимаемые в формуле (33) со своими знаками, а также τxy следует определять в одно и то же точке балки.

5.15. Расчет на усточивость балок двутаврового сечения, изгибаемых в плоскости стенки и удовлетворяющих требованиям пп. 5.12 и 5.14*, следует выполнять по формуле

,                                                         (34)

где Wc - следует определять для сжатого пояса;

φb - коэффициент, определяемы по прил. 7*.

При определении значения φb за расчетную длину балки lef следует принимать расстояние между точками закреплени сжатого пояса от поперечных смещени (узлами продольных или поперечных связе, точками крепления жесткого настила); при отсутствии связе lef = l (где l - пролет балки) за расчетную длину консоли следует принимать lef = l при отсутствии закрепления сжатого пояса на конце консоли в горизонтально плоскости (здесь l - длина консоли); расстояние между точками закреплени сжатого пояса в горизонтально плоскости при закреплении пояса на конце и по длине консоли.

5.16*. Усточивость балок не требуется проверять:

а) при передаче нагрузки через сплошно жестки настил, непрерывно опирающися на сжаты пояс балки и надежно с ним связанны (плиты железобетонные из тяжелого, легкого и ячеистого бетона, плоски и профилированны металлически настил, волнистую сталь и т.п.);

б) при отношении расчетно длины балки lef к ширине сжатого пояса b, не превышающем значени, определяемых по формулам табл. 8* для балок симметричного двутаврового сечения и с более развитым сжатым поясом, для которых ширина растянутого пояса составляет не менее 0,75 ширины сжатого пояса.

Таблица 8*

Место приложения нагрузки

Наибольшие значения lef / b, при которых не требуется расчет на усточивость прокатных и сварных балок (при 1 ≤ h / b < 6 и 15 ≤ b / t ≤ 35)

К верхнему поясу

                       (35)

К нижнему поясу

                      (36)

Независимо от уровня приложения нагрузки при расчете участка балки между связями или при чистом изгибе

                    (37)

Обозначения, принятые в табл. 8*:

b и t - соответственно ширина и толщина сжатого пояса;

h - расстояние (высота) между осями поясных листов.

Примечания. 1. Для балок с поясными соединениями на высокопрочных болтах значения lef / b, получаемые по формулам табл. 8* следует умножать на коэффициент 1,2.

2. Для балок с отношением b / t < 15 в формулах табл. 8* следует принимать b / t = 15.

Закрепление сжатого пояса в горизонтально плоскости должно быть рассчитано на фактическую или условную поперечную силу. При этом условную поперечную силу следует определять:

при закреплении в отдельных точках по формуле (23)*, в которо φ следует определять при гибкости λ = lef / i (здесь i - радиус инерции сечения сжатого пояса в горизонтально плоскости), а N следует вычислять по формуле

N = (Af + 0,25 Aw) Ry;                                                  (37, а)

при непрерывном закреплении по формуле

qfic = 3Qfic / l,                                                          (37, б)

где qfic - условная поперечная сила на единицу длины пояса балки;

Qfic - условная поперечная сила, определяемая по формуле (23)*, в которо следует принимать φ = 1, а N - определять по формуле (37, а).

5.17. Расчет на прочность элементов, изгибаемых в двух главных плоскостях, следует выполнять по формуле

,                                                  (38)

где x и у - координаты рассматриваемо точки сечения относительно главных осе.

В балках, рассчитываемых по формуле (38), значения напряжени в стенке балки должны быть проверены по формулам (29) и (33) в двух главных плоскостях изгиба.

При выполнении требовани п. 5.16*, а проверка усточивости балок, изгибаемых в двух плоскостях, не требуется.

5.18*. Расчет на прочность разрезных балок сплошного сечения из стали с пределом текучести до 530 МПа (5400 кгс/см2), несущих статическую нагрузку, при соблюдении пп. 5.19*-5.21, 7.5 и 7.24 следует выполнять с учетом развития пластических деформаци по формулам:

при изгибе в одно из главных плоскосте при касательных напряжениях τ 0,9Rs (кроме опорных сечени)

;                                                     (39)

при изгибе в двух главных плоскостях при касательных напряжениях τ 0,5Rs (кроме опорных сечени)

;                                              (40)

здесь М, Мх и My - абсолютные значения изгибающих моментов;

c1 - коэффициент, определяемы по формулам (42) и (43);

сх и су - коэффициенты, принимаемые по табл. 66.

Расчет в опорном сечении балок (при М = 0; Мх = 0 и My = 0) следует выполнять по формуле

.                                                        (41)

При наличии зоны чистого изгиба в формулах (39) и (40) вместо коэффициентов с1, сх и су следует принимать соответственно:

c1m = 0,5 (1 + с); схт = 0,5 (1 + сх); сут = 0,5 (1 + cу).

При одновременном дествии в сечении момента М и поперечно силы Q коэффициент c1 следует определять по формулам:

при τ ≤ 0,5Rs         c1 = c;                                                      (42)

при 0,5Rs < τ ≤ 0,9Rs         c1 = 1,05βc,                                         (43)

где

; ;                                                  (44)

здесь с - коэффициент, принимаемы по табл. 66;

t и h - соответственно толщина и высота стенки;

α - коэффициент, равны α = 0,7 для двутаврового сечения, изгибаемого в плоскости стенки; α = 0 - для других типов сечени;

c1 - коэффициент, принимаемы не менее единицы и не более коэффициента с.

С целью оптимизации балок при их расчете с учетом требовани пп. 5.20, 7.5, 7.24 и 13.1 значения коэффициентов с, сх и су в формулах (39) и (40) допускается принимать меньше значени, приведенных в табл. 66, но не менее 1,0.

При наличии ослабления стенки отверстиями для болтов значения касательных напряжени τ следует умножать на коэффициент, определяемы по формуле (30).

5.19*. Расчет на прочность балок переменного сечения с учетом развития пластических деформаци следует выполнять только для одного сечения с наиболее неблагоприятным сочетанием усили М и Q; в остальных сечениях учитывать развитие пластических деформаци не допускается.

Расчет на прочность изгибаемых элементов из стали с пределом текучести до 530 МПа (5400 кгс/см2), воспринимающих динамические, вибрационные или подвижные нагрузки, допускается выполнять с учетом развития пластических деформаци, не препятствующих требуемым условиям эксплуатации конструкци и оборудования.

5.20. Для обеспечения обще усточивости балок, рассчитываемых с учетом развития пластических деформаци, необходимо, чтобы либо были выполнены требования п. 5.16*, а, либо наибольшие значения отношени расчетно длины балки к ширине сжатого пояса lef / b, определяемые по формулам табл. 8*, были уменьшены умножением на коэффициент δ = [1 - 0,7 (c1 - 1) / (с - 1)], здесь 1 < c1 < с.

Учет пластичности при расчете балок со сжатым поясом менее развитым, чем растянуты, допускается лишь при выполнении услови п. 5.16*, а.

5.21. В балках, рассчитываемых с учетом развития пластических деформаци, стенки следует укреплять поперечными ребрами жесткости согласно требованиям пп. 7.10, 7.12 и 7.13 , в том числе в местах приложения сосредоточенно нагрузки.

5.22. Расчет на прочность неразрезных и защемленных балок постоянного двутаврового сечения, изгибаемых в плоскости наибольше жесткости, со смежными пролетами, отличающимися не более чем на 20 % , несущих статическую нагрузку, при условии соблюдения требовани пп. 5.20, 5.21, 7.5 и 7.24 следует выполнять по формуле (39) с учетом перераспределения опорных и пролетных моментов.

Расчетные значения изгибающего момента М следует определять по формуле

М = αМтах,                                                        (45)

где Мтах - наибольши изгибающи момент в пролете или на опоре, определяемы из расчета неразрезно балки в предположении упруго работы материала;

α - коэффициент перераспределения моментов, определяемы по формуле

;                                                        (46)

здесь Mef - условны изгибающи момент, равны:

а) в неразрезных балках со свободно опертыми концами большему из значени

;                                                    (47)

Мef = 0,5М2,                                                             (48)

где символ max означает, что следует нати максимум всего следующего за ним выражения;

М1 - изгибающи момент в кранем пролете, вычисленны как в свободно оперто однопролетно балке;

M2 - максимальны изгибающи момент в промежуточном пролете, вычисленны как в свободно оперто однопролетно балке;

α - расстояние от сечения, в котором дествует момент M1, до кране опоры;

l - длина кранего пролета;

б) в однопролетных и неразрезных балках с защемленными концами Mef = 0,5M3, где М3 - наибольши из моментов, вычисленных как в балках с шарнирами на опорах;

в) в балке с одним защемленным и другим свободно опертым концом значение Mef следует определять по формуле (47).

Расчетное значение поперечно силы Q в формуле (44) следует принимать в месте дествия Мтах. Если Мтах - момент в пролете, следует проверить опорное сечение балки.

5.23. Расчет на прочность неразрезных и защемленных балок, удовлетворяющих требованиям п. 5.22, в случае изгиба в двух главных плоскостях при τ 0,5Rs следует производить по формуле (40) с учетом перераспределения опорных и пролетных моментов в двух главных плоскостях согласно требованиям п. 5.22.

ЭЛЕМЕНТЫ, ПОДВЕРЖЕННЫЕ ДЕЙСТВИЮ ОСЕВОЙ СИЛЫ С ИЗГИБОМ

5.24*. Расчет на прочность внецентренножатых и сжато-изгибаемых элементов по формуле (49) выполнять не требуется при значении приведенного эксцентриситета mef 20, отсутствии ослабления сечения и одинаковых значениях изгибающих моментов, принимаемых в расчетах на прочность и усточивость.

5.25*. Расчет на прочность внецентренно-сжатых, сжато-изгибаемых, внецентренно-растянутых и растянуто-изгибаемых элементов из стали с пределом текучести до 530 МПа (5400 кгс/см2), не подвергающихся непосредственному воздествию динамических нагрузок, при τ ≤ 0,5Rs и N / (AnRy) > 0,1 следует выполнять по формуле

,                           (49)

где N, Мх и My - абсолютные значения соответственно продольно силы и изгибающих моментов при наиболее неблагоприятном их сочетании;

п, сх и cу - коэффициенты, принимаемые по прил. 5.

Если N / (AnRy) 0,1, формулу (49) следует применять при выполнении требовани пп. 7.5 и 7.24.

В прочих случаях расчет следует выполнять по формуле

,                                              (50)

где х и у - координаты рассматриваемо точки сечения относительно его главных осе.

5.26. Расчет на усточивость внецентренно-сжатых и сжато-изгибаемых элементов следует выполнять как в плоскости дествия момента (плоская форма потери усточивости), так и из плоскости дествия момента (изгибнорутильная форма потери усточивости).

5.27*. Расчет на усточивость внецентренно-сжатых и сжато-изгибаемых элементов постоянного сечения (с учетом требовани пп. 5.28* и 5.33 настоящих норм) в плоскости дествия момента, совпадающе с плоскостью симметрии, следует выполнять по формуле

.                                                           (51)

В формуле (51) коэффициент φe следует определять:

а) для сплошностенчатых стержне по табл. 74 в зависимости от условно гибкости  и приведенного относительного эксцентриситета теf определяемого по формуле

mef = ηm,                                                              (52)

где η -       коэффициент влияния формы сечения, определяемы по табл. 73;

 - относительны эксцентриситет (здесь е - эксцентриситет; Wc - момент сопротивления сечения для наиболее сжатого волокна);

б) для сквозных стержне с решетками или планками, расположенными в плоскостях, параллельных плоскости изгиба, по табл. 75 в зависимости от условно приведенно гибкости  (λef по табл. 7) и относительного эксцентриситета т, определяемого по формуле

,                                                            (53)

где а - расстояние от главно оси сечения, перпендикулярно плоскости изгиба, до оси наиболее сжато ветви, но не менее расстояния до оси стенки ветви.

При вычислении эксцентриситета е = M / N значения М и N следует принимать согласно требованиям п. 5.29.

Расчет на усточивость внецентренножатых и сжато-изгибаемых трехгранных сквозных стержне с решетками или планками и постоянным по длине равносторонним сечением следует выполнять согласно требованиям разд. 15*.

Расчет на усточивость не требуется для сплошностенчатых стержне при mef > 20 и для сквозных стержне при m > 20, в этих случаях расчет следует выполнять как для изгибаемых элементов.

5.28*. Внецентренно-сжатые элементы, выполненные из стали с пределом текучести свыше 530 МПа (5400 кгс/см2) и имеющие резко несимметричные сечения (типы сечени 10 и 11 по табл. 73), кроме расчета по формуле (51), должны быть проверены на прочность по формуле

,                                                      (54)

где значение Wnt следует вычислять для растянутого волокна, а коэффициент δ определять по формуле

δ = 1 - 2 / (πEA).                                                       (55)

5.29. Расчетные значения продольно силы N и изгибающего момента М в элементе следует принимать для одного и того же сочетания нагрузок из расчета системы по недеформированно схеме в предположении упругих деформаци стали.

При этом значения М следует принимать равными:

для колонн постоянного сечения рамных систем - наибольшему моменту в пределах длины колонн;

для ступенчатых колонн - наибольшему моменту на длине участка постоянного сечения;

для колонн с одним защемленным, а другим свободным концом - моменту в заделке, но не менее момента в сечении, отстоящем на треть длины колонны от заделки;

для сжатых верхних поясов ферм и структурных плит, воспринимающих внеузловую нагрузку, - наибольшему моменту в пределах средне трети длины панели пояса, определяемому из расчета пояса как упруго неразрезно балки;

для сжатых стержне с шарнирнопертыми концами и сечениями, имеющими одну ось симметрии, совпадающую с плоскостью изгиба, - моменту, определяемому по формулам табл. 9.

Для сжатых стержне с шарнирно-опертыми концами и сечениями, имеющими две оси симметрии, расчетные значения эксцентриситетов mef следует определять по табл. 76.

Таблица 9

Относительны эксцентриситет соответствующи Мmax

Расчетные значения М при условно гибкости стержня

 < 4

 ≥ 4

т 3

M = M1

3 < m20

Обозначения, принятые в табл. 9:

Мтах - наибольши изгибающи момент в пределах длины стержня;

M1 - наибольши изгибающи момент в пределах средне трети длины стержня, но не менее 0,5Mmax;

m - относительны эксцентриситет, определяемы по формуле

m = MmaxA / (NWc).

Примечание. Во всех случаях следует принимать М ≥ 0,5Мтах.

5.30. Расчет на усточивость внецентренно-сжатых элементов постоянного сечения из плоскости дествия момента при изгибе их в плоскости наибольше жесткости (Jx > Jy), совпадающе с плоскостью симметрии, следует выполнять по формуле

,                                                         (56)

где с - коэффициент, вычисляемы согласно требованиям п. 5.31;

φy - коэффициент, вычисляемы согласно требованиям п. 5.3 настоящих норм.

5.31. Коэффициент с в формуле (56) следует определять:

при значениях относительного эксцентриситета тх 5 по формуле

,                                                           (57)

где α и β - коэффициенты, принимаемые по табл. 10;

при значениях относительного эксцентриситета тх 10 по формуле

,                                                       (58)

где φb - коэффициент, определяемы согласно требованиям п. 5.15 и прил. 7* как для балки с двумя и более закреплениями сжатого пояса; для замкнутых сечени φb = 1,0;

Таблица 10

Типы сечени

Значения коэффициентов

α при

β при

mх 1

1 < mх 5

λyλx

λy > λс

Открытые

0,7

0,65 + 0,05 mх

1

1

;

при J2/J1 < 0,5 β = 1

Замкнутые.

0,6

0,55 + 0,05 mx

1

с решетками (с планками)

сплошные

Обозначения, принятые в табл. 10:

J1 и J2 - моменты инерции соответственно больше и меньше полок относительно оси симметрии сечения у-у;

φc - значение φy при .

Примечание. Значения коэффициентов α и β для сквозных стержне с решетками (или планками) следует принимать как для замкнутых сечени при наличии не менее двух промежуточных диафрагм по длине стержня. В противном случае следует принимать коэффициенты, установленные для стержне открытого двутаврового сечения.

при значениях относительного эксцентриситета 5 < тx < 10 по формуле

с = cs (2 - 0,2тх) + с10 (0,2mx - 1),                                                 (59)

где сs определяется по формуле (57) при mx = 5, а c10 - по формуле (58) при mx = 10.

При определении относительного эксцентриситета mх за расчетны момент Мх следует принимать:

для стержне с шарнирнопертыми концами, закрепленными от смещения перпендикулярно плоскости дествия момента, - максимальны момент в пределах средне трети длины (но не менее половины наибольшего по длине стержня момента);

для стержне с одним защемленным, а другим свободным концом - момент в заделке (но не менее момента в сечении, отстоящем на треть длины стержня от заделки).

При гибкости  коэффициенте не должен превышать:

для стержне замкнутого сечения - единицы;

для стержне двутаврового сечения с двумя осями симметрии - значени, определяемых по формуле

                                     (60)

где

δ = 4ρ / μ; ρ = (Jx + Jy) / (Ah2);

; Jt = 0,433 Σbit3i;

здесь bi и ti - соответственно ширина и толщина листов, образующих сечение;

h - расстояние между осями поясов, для двутавровых и тавровых сечени с одно осью симметрии коэффициенты с не должны превышать значени, определяемых по формуле (173) прил. 6.

5.32. Внецентренно-сжатые элементы, изгибаемые в плоскости наименьше жесткости (Jy <Jx и eу0), при λх > λу следует рассчитывать по формуле (51), а также проверять на усточивость из плоскости дествия момента как центрально-сжатые стержни по формуле

,                                                           (61)

где φx - коэффициент, принимаемы согласно требованиям п. 5.3 настоящих норм.

При λх λу проверки усточивости из плоскости дествия момента не требуется.

5.33. В сквозных внецентренножатых стержнях с решетками, расположенными в плоскостях, параллельных плоскости изгиба, кроме расчета на усточивость стержня в целом по формуле (51) должны быть проверены отдельные ветви как центрально-сжатые стержни по формуле (7).

Продольную силу в каждо ветви следует определять с учетом дополнительного усилия от момента. Значение этого усилия при изгибе в плоскости, перпендикулярно оси у-у (табл. 7), должно быть определено по формулам: Nad = M / b - для сечени типов 1 и 3; Nad = M/2b - для сечения типа 2; для сечения типа 3 при изгибе в плоскости, перпендикулярно оси х-х, усилие от момента Nad = 1,16M / b (здесь b - расстояние между осями ветве).

Отдельные ветви внецентренно-сжатых сквозных стержне с планками следует проверять на усточивость как внецентренножатые элементы с учетом усили от момента и местного изгиба ветве от фактическо или условно поперечно силы (как в поясах безраскосно фермы), а также п. 5.36 настоящих норм.

5.34. Расчет на усточивость сплошностенчатых стержне, подверженных сжатию и изгибу в двух главных плоскостях, при совпадении плоскости наибольше жесткости (Jx > Jy) с плоскостью симметрии следует выполнять по формуле

,                                                         (62)

где

;

здесь φеу следует определять согласно требованиям п. 5.27* с замено в формулах т и λ соответственно на ту и λу, а с - согласно требованиям п. 5.31.

При вычислении приведенного относительного эксцентриситета mef,y = ηmу для стержне двутаврового сечения с неодинаковыми полками коэффициент η следует определять как для сечения типа 8 по табл. 73.

Если mef,y < mx, то кроме расчета по формуле (62) следует произвести дополнительную проверку по формулам (51) и (56), принимая еу = 0.

Значения относительных эксцентриситетов следует определять по формулам:

 и ,                                              (63)

где Wcx и Wcv - моменты сопротивления сечени для наиболее сжатого волокна относительно осе соответственно x-x и у-у.

Если λх > λу, то кроме расчета по формуле (62) следует произвести дополнительную проверку по формуле (51), принимая еу = 0.

В случае несовпадения плоскости наибольше жесткости (Jx > Jy) с плоскостью симметрии расчетное значение mх следует увеличить на 25 %.

Рис. 6. Сквозное сечение стержня из двух сплошностенчатых ветве

5.35. Расчет на усточивость сквозных стержне из двух сплошностенчатых ветве, симметричных относительно оси у-у (рис. 6), с решетками в двух параллельных плоскостях, подверженных сжатию и изгибу в обеих главных плоскостях, следует выполнять:

для стержня в целом - в плоскости, параллельно плоскостям решеток, согласно требованиям п. 5.27*, принимая еу = 0;

для отдельных ветве - как внецентренно-сжатых элементов по формулам (51) и (56), при этом продольную силу в каждо ветви следует определять с учетом усилия от момента Мх (см. п. 5.33), а момент Му распределять между ветвями пропорционально их жесткостям (если момент Му дествует в плоскости одно из ветве, то следует считать его полностью передающимся на эту ветвь). Гибкость отдельно ветви следует определять при расчете по формуле (51) согласно требованиям п. 6.13 настоящих норм, при расчете по формуле (56) - по максимальному расстоянию между узлами решетки.

5.36. Расчет соединительных планок или решеток сквозных внецентренно-сжатых стержне следует выполнять согласно требованиям п. 5.9 и 5.10 настоящих норм на поперечную силу, равную большему из двух значени: фактическую поперечную силу Q или условную поперечную силу Qfjc, вычисляемую согласно требованиям п. 5.8* настоящих норм.

В случае, когда фактическая поперечная сила больше условно, соединять планками ветви сквозных внецентренно-сжатых элементов, как правило, не следует.

ОПОРНЫЕ ЧАСТИ

5.37. Неподвижные шарнирные опоры с центрирующими прокладками, тангенциальные, а при весьма больших реакциях - балансирные опоры следует применять при необходимости строго равномерного распределения давления под опоро.

Плоские или катковые подвижные опоры следует применять в случаях, когда нижележащая конструкция должна быть разгружена от горизонтальных усили, возникающих при неподвижном опирании балки или фермы.

Коэффициент трения в плоских подвижных опорах принимается равным 0,3, в катковых - 0,03.

5.38. Расчет на смятие в цилиндрических шарнирах (цапфах) балансирных опор следует выполнять (при центральном угле касания поверхносте, равном или большем π/2) по формуле

,                                                            (64)

где F - давление (сила) на опору;

r и l - соответственно радиус и длина шарнира;

Rlp - расчетное сопротивление местному смятию при плотном касании, принимаемое согласно требованиям п. 3.1* настоящих норм.

5.39. Расчет на диаметральное сжатие катков должен производиться по формуле

,                                                               (65)

где п -  число катков;

d и l -   соответственно диаметр и длина катка;

Rcd -      расчетное сопротивление диаметральному сжатию катков при свободном касании, принимаемое согласно требованиям п. 3.1* настоящих норм.

6. РАСЧЕТНЫЕ ДЛИНЫ И ПРЕДЕЛЬНЫЕ ГИБКОСТИ ЭЛЕМЕНТОВ СТАЛЬНЫХ КОНСТРУКЦИЙ

РАСЧЕТНЫЕ ДЛИНЫ ЭЛЕМЕНТОВ ПЛОСКИХ ФЕРМ И СВЯЗЕЙ

6.1. Расчетные длины lef элементов плоских ферм и связе, за исключением элементов перекрестно решетки ферм, следует принимать по табл. 11.

6.2. Расчетную длину lef элемента, по длине которого дествуют сжимающие силы N1 и N2 (N1 > N2), из плоскости фермы (рис. 7, в, г; рис. 8) следует вычислять по формуле

                                             (66)

Расчет на усточивость в этом случае следует выполнять на силу N1.

Таблица 11

Направление продольного изгиба

Расчетная длина lef

поясов

опорных раскосов и опорных стоек

прочих элементов решетки

1. В плоскости фермы:

 

 

 

а) для ферм, кроме указанных в поз. 1, б

l

l

0,8l

б) для ферм из одиночных уголков и ферм с прикреплением элементов решетки к поясам впритык

l

l

0,9l

2. В направлении, перпендикулярном плоскости фермы (из плоскости фермы):

 

 

 

а) для ферм, кроме указанных в поз. 2, б

l1

l1

l1

б) для ферм с поясами из замкнутых профиле с прикреплением элементов решетки к поясам впритык

l1

l1

0,9l1

Обозначения, принятые в табл. 11 (рис. 7):

l -       геометрическая длина элемента (расстояние между центрами узлов) в плоскости фермы;

l1 -     расстояние между узлами, закрепленными от смешения из плоскости фермы (поясами ферм, специальными связями, жесткими плитами покрыти, прикрепленными к поясу сварными швами или болтами, и т.п.).

Рис. 7. Схемы решеток ферм для определения расчетных длин элементов

а - треугольная со стоками; б - раскосная; в - треугольная со шпренгелем; г - полураскосная треугольная; д - перекрестная

6.3*. Расчетные длины lef элементов перекрестно решетки, скрепленных между собо (рис. 7, д), следует принимать:

в плоскости фермы - равными расстоянию от центра узла фермы до точки их пересечения (lef = l);

из плоскости фермы: для сжатых элементов - по табл. 12; для растянутых элементов - равными полно геометрическо длине элемента (lef = l1).

Рис. 8. Схемы для определения расчетно длины пояса фермы из плоскости

а - схема фермы; б - схема связе между фермами (вид сверху)

Таблица 12

Конструкция узла пересечения элементов решетки

Расчетная длина lef из плоскости фермы при поддерживающем элементе

растянутом

неработающем

сжатом

Оба элемента не прерываются

l

0,7l1

l1

Поддерживающи элемент прерывается и перекрывается фасонко:

 

 

 

рассматриваемы элемент не прерывается

0,7l1

l1

1,4l1

рассматриваемы элемент прерывается и перекрывается фасонко

0,7l1

-

 

Обозначения, принятые в табл. 12 (рис. 7, д):

l - расстояние от центра узла фермы до пересечения элементов;

l1 - полная геометрическая длина элемента.

6.4. Радиусы инерции i сечени элементов из одиночных уголков следует принимать:

при расчетно длине элемента, равно l или 0,9l (где l - расстояние между ближашими узлами) - минимальны (i = imin);

в остальных случаях - относительно оси уголка, перпендикулярно или параллельно плоскости фермы (i = ix или i = iy в зависимости от направления продольного изгиба).

РАСЧЕТНЫЕ ДЛИНЫ ЭЛЕМЕНТОВ ПРОСТРАНСТВЕННЫХ РЕШЕТЧАТЫХ КОНСТРУКЦИЙ

6.5*. Расчетные длины lef и радиусы инерции сечени i сжатых и ненагруженных элементов из одиночных уголков при определении гибкости следует принимать по табл. 13*.

Таблица 13

Элементы

lef

i

Пояса:

 

 

по рис. 9*, а, б, в

lm

imin

по рис. 9*, г, д, е

1,14lm

ix или iy

Раскосы:

 

 

по рис. 9*, б, в, г

μdld

imin

по рис. 9*, а, д

μdldc

imin

по рис. 9*, е

ld

imin

Распорки:

 

 

по рис. 9*, б

0,8lс

imin

по рис. 9*, в

0,65lс

imin

Обозначения, принятые в табл. 13* (рис. 9*):

ldc - условная длина раскоса, принимаемая по табл. 14*;

μd - коэффициент расчетно длины раскоса, принимаемы по табл. 15*.

Примечания: 1. Раскосы по рис. 9*, а, д, е в точках пересечения должны быть скреплены между собо.

2. Для раскосов по рис. 9*, е необходима дополнительная проверка их из плоскости грани с учетом расчета по деформированно схеме.

3. Значение lef для распорок по рис 9*, в дано для равнополочных уголков.

Рис. 9*. Схемы пространственных решетчатых конструкци

а, б, в - с совмещенными в смежных гранях узлами; г, д, е - с несовмещенными в смежных гранях узлами

Расчетные длины lef и радиусы инерции i растянутых элементов из одиночных уголков при определении гибкости следует принимать:

для поясов - по табл. 13*;

для перекрестных раскосов по рис. 9*, а, д, е:

в плоскости грани - равными длине ld и радиусу инерции imin; из плоскости грани - полно геометрическо длине раскоса Ld, равно расстоянию между узлами прикрепления к поясам, и радиусу инерции ix относительно оси, параллельно плоскости грани;

для раскосов по рис. 9*, б, в, г - равными длине ld и радиусу инерции imin.

Расчетные длины lef и радиус инерции i элементов из труб или парных уголков следует принимать согласно требованиям подраздела «Расчетные длины элементов плоских ферм и связе».

Таблица 14*

Конструкция узла пересечения элементов решетки

Условная длина раскоса Idc при поддерживающем элементе

растянутом

неработающем

сжатом

Оба элемента не прерываются

ld

1,3ld

0,8Ld

Поддерживающи элемент прерывается и перекрывается фасонко; рассматриваемы элемент не прерывается:

 

 

 

в конструкциях по рис. 9*, а

1,3ld

1,6ld

Ld

в конструкциях по рис. 9*, д:

 

 

 

при 1 < n ≤ 3

(1,75 - 0,15п) ld

(1,9 - 0,1n) ld

Ld

при п > 3

1,3ld

1,6ld

Ld

Узел пересечения элементов закреплен от смещения из плоскости грани (диафрагмо и т.п.)

ld

ld

ld

Обозначения, принятые в табл. 14*:

Ld - длина раскоса по рис. 9*, a, д;

где Jт,тin и Jd,min - наименьшие моменты инерции сечения соответственно пояса и раскоса.

Таблица 15*

Прикрепление элемента к поясам

n

Значение μd при , равном

до 60

св. 60 до 160

св. 160

Сварными швами, болтами (не менее двух), расположенными вдоль элемента, без фасонок

До 2

1,14

0,54 + 36

0,765

Св. 6

1,04

0,56 + 28,8

0,74

Одним болтом без фасонки

Независимо от n

1,12

0,64 + 28,8

0,82

Обозначения, принятые в табл. 15*:

п - см. табл. 14*;

l - длина, принимаемая: ld - по рис 9*, б, в, г; ldс - по табл. 14* (для элементов - по рис. 9*, а, д).

Примечания. 1. Значения μd при значениях n от 2 до 6 следует определять линено интерполяцие.

2. При прикреплении одного конца раскоса к поясу фасонок сварко или болтами, а второго конца через фасонку, коэффициент расчетно длины раскоса следует принимать равным 0,5(1 + μd); при прикреплении обоих концов раскоса через фасонки - μd = 1,0.

3. Концы раскосов по рис. 9*, в следует крепить, как правило, без фасонок. В этом случае при их прикреплении к распорке и поясу сварными швами или болтами (не менее двух), расположенными вдоль раскоса, значение коэффициента μd следует принимать по строке при значении n «До 2». В случае прикрепления их концов одним болтом значение коэффициента μd следует принимать по строке «Одним болтом без фасонки», при вычислении значения lef по табл. 13* вместо μd следует принимать 0,5 (1 + μd).

6.6. Расчетные длины lеf и радиусы инерции сечени i при определении гибкости элементов плоских траверс (например, по рис. 21) следует принимать по табл. 16.

Таблица 16

Конструкция траверсы

Расчетная длина lef и радиус инерции сечения i

поясов

решетки

lef

i

lef

i

С поясами и решетко из одиночных уголков (рис. 21, а)

lm

lm1

imin

ix

ld, lc

-

imin

-

С поясами из швеллеров и решетко из одиночных уголков (рис. 21, б)

lm

1,12lm1

iy

ix

ld, lc

-

imin

-

Обозначение, принятое в табл. 16:

ix - радиус инерции сечения относительно оси, параллельно плоскости решетки траверсы.

РАСЧЕТНЫЕ ДЛИНЫ ЭЛЕМЕНТОВ СТРУКТУРНЫХ КОНСТРУКЦИЙ

6.7. Расчетные длины lef элементов структурных конструкци следует принимать по табл. 17.

Радиусы инерции сечени i элементов структурных конструкци при определении гибкости следует принимать:

для сжато-изгибаемых элементов относительно оси, перпендикулярно или параллельно плоскости изгиба (i = ix или i = iy);

в остальных случаях - минимальные (i = imin).

РАСЧЕТНЫЕ ДЛИНЫ КОЛОНН (СТОЕК)

6.8. Расчетные длины lef колонн (стоек) постоянного сечения или отдельных участков ступенчатых колонн следует определять по формуле

lef = μl,                                                                      (67)

где l - длина колонны, отдельного участка ее или высота этажа;

μ - коэффициент расчетно длины.

6.9*. Коэффициенты расчетно длины μ колонн и стоек постоянного сечения следует принимать в зависимости от услови закрепления их концов и вида нагрузки.

Для некоторых случаев закрепления и вида нагрузки значения μ приведены в прил. 6, табл. 71, а.

6.10*. Коэффициенты расчетно длины колонн постоянного сечения в плоскости рамы при жестком креплении ригеле к колоннам следует определять:

для свободных рам при одинаковом нагружении верхних узлов по формулам табл. 17, а;

Таблица 17

Элементы структурных конструкци

Расчетная длина lef

1. Кроме указанных в поз. 2 и 3

l

2. Неразрезные (не прерывающиеся в узлах) пояса и прикрепляемые в узлах сварко впритык к шаровым или цилиндрическим узловым элементам

0,85l

3. Из одиночных уголков, прикрепляемых в узлах одно полко:

 

а) сварными швами или болтами (не менее двух), расположенными вдоль элемента, при l / imin:

 

до 90

l

св. 90 до 120

0,9l

«   120   «   150 (только для элементов решетки)

0,75l

св. 150 до 200 (только для элементов решетки)

0,7l

б) одним болтом при l / imin:

 

до 90

l

св. 90 до 120

0,95l

«   120   «   150 (только для элементов решетки)

0,85l

св. 150 до 200 (только для элементов решетки)

0,8l

Обозначение, принятое в табл. 17:

l - геометрическая длина элемента (расстояние между узлами структурно конструкции).

для несвободных рам по формуле

                                          (70, в)

В формуле (70, в) p и n принимаются равными:

в одноэтажно раме: ; ;

в многоэтажно раме:

для верхнего этажа p = 0,5 (p1 + p2); п = п1 + n2;

  «    среднего     «     p = 0,5 (p1 + p2); n = 0,5 (n1 + n2);

  «    нижнего     «     p = p1 + p2; n = 0,5 (n1 + n2),

где p1; p2; n1; n2 следует определять по табл. 17, а.

Для одноэтажных рам в формуле (69) и многоэтажных в формулах (70, а, б, в) при шарнирном креплении нижних или верхних ригеле к колоннам принимаются р = 0 или п = 0 (Ji = 0 или Js = 0), при жестком креплении р = 50 или п = 50 (Ji = ∞ или Js = ∞).

При отношении H / B > 6 (где H - полная высота многоэтажно рамы, В - ширина рамы) должна быть проверена общая усточивость рамы в целом как составного стержня, защемленного в основании.

Примечание. Рама считается свободно (несвободно), если узел крепления ригеля к колонне имеет (не имеет) свободу перемещения в направлении, перпендикулярном оси колонны в плоскости рамы.

Коэффициент расчетно длины μ наиболее нагруженно колонны в плоскости одноэтажно свободно рамы здания при неравномерном нагружении верхних узлов и наличии жесткого диска покрытия или продольных связе по верху всех колонн следует определять по формуле

,                                                   (71)*

где μ -         коэффициент расчетно длины проверяемо колонны, вычисленны по табл. 17, а;

Jc и Nc -      соответственно момент инерции сечения и усилие в наиболее нагруженно колонне рассматриваемо рамы;

ΣNi и ΣJi -  соответственно сумма расчетных усили и моментов инерции сечени всех колонн рассматриваемо рамы и четырех соседних рам (по две с каждо стороны); все усилия Ni следует находить при то же комбинации нагрузок, которая вызывает усилие в проверяемо колонне.

Значения μef, вычисленные по формуле (71)* следует принимать не менее 0,7.

6.11*. Коэффициенты расчетно длины μ отдельных участков ступенчатых колонн в плоскости рамы следует определять согласно прил. 6.

При определении коэффициентов расчетно длины μ для ступенчатых колонн рам одноэтажных производственных здани разрешается:

не учитывать влияние степени загружения и жесткости соседних колонн;

определять расчетные длины колонн лишь для комбинации нагрузок, дающе наибольшие значения продольных сил на отдельных участках колонн, и получаемые значения μ использовать для других комбинаци нагрузок;

для многопролетных рам (с числом пролетов два и более) при наличии жесткого диска покрытия или продольных связе, связывающих поверху все колонны и обеспечивающих пространственную работу сооружения, определять расчетные длины колонн как для стоек, неподвижно закрепленных на уровне ригеле;

для одноступенчатых колонн при соблюдении услови l2/l1 ≤ 0,6 и N1/N2 3 принимать значения μ по табл. 18.

Таблица 17, а

Расчетные схемы свободных рам

Формулы для определения коэффициента μ

Коэффициенты n и p в формулах (68), (69) и (70 а, б) для рам

однопролетных

многопролетных (k ≥ 2)

                    (68)

                     (69)

при n ≤ 0,2

;   (70, а)

при n > 0,2

;           (70, б)

Верхни этаж

Средни этаж

Нижни этаж

Обозначения, принятые в табл. 17, а:

; ; ; .

k -                       число пролетов;

Jc и lc -               соответственно момент инерции сечения и длина проверяемо колонны;

l, l1, l2 -               пролеты рамы;

Js, Js1, Js2

 и Ji, Ji1, Ji2 -       моменты инерции сечения ригеле, примыкающих соответственно к верхнему и нижнему концу проверяемо колонны.

Примечание. Для кране колонны свободно многопролетно рамы коэффициент μ следует определять как для колонн однопролетно рамы.

6.12. Исключен.

6.13. Расчетные длины колонн в направлении вдоль здания (из плоскости рам) следует принимать равными расстояниям между закрепленными от смещения из плоскости рамы точками (опорами колонн, подкрановых балок и подстропильных ферм; узлами креплени связе и ригеле и т.п.). Расчетные длины допускается определять на основе расчетно схемы, учитывающе фактические условия закрепления концов колонн.

Таблица 18

Условия закрепления верхнего конца колонны

Коэффициенты μ для участка колонны

нижнего при J2/J1, равном

верхнего

св. 0,1 до 0,3

св. 0,05 до 0,1

Свободны конец

2,5

3,0

3,0

Конец, закрепленны только от поворота

2,0

2,0

3,0

Неподвижны, шарнирно оперты конец

1,6

2,0

2,5

Неподвижны, закрепленны от поворота конец

1,2

1,5

2,0

Обозначения, принятые в табл. 18:

l1; J1; N1 -   соответственно длина нижнего участка колонны, момент инерции сечения и дествующая на этом участке продольная сила;

l2; J2; N2 -   то же, верхнего участка колонны.

6.14. Расчетную длину ветве плоских опор транспортерных галере следует принимать равно:

в продольном направлении галереи - высоте опоры (от низа базы до оси нижнего пояса фермы или балки), умноженно на коэффициент μ, определяемы как для стоек постоянного сечения в зависимости от услови закрепления их концов;

в поперечном направлении (в плоскости опоры) - расстоянию между центрами узлов, при этом должна быть также проверена общая усточивость опоры в целом как составного стержня, защемленного в основании и свободного вверху.

ПРЕДЕЛЬНЫЕ ГИБКОСТИ СЖАТЫХ ЭЛЕМЕНТОВ

6.15*. Гибкости сжатых элементов не должны превышать значени, приведенных в табл. 19*.

ПРЕДЕЛЬНЫЕ ГИБКОСТИ РАСТЯНУТЫХ ЭЛЕМЕНТОВ

6.16*. Гибкости растянутых элементов не должны превышать значени, приведенных в табл. 20*.

Таблица 19*

Элементы конструкци

Предельная гибкость сжатых элементов

1. Пояса, опорные раскосы и стоки, передающие опорные реакции:

 

а) плоских ферм, структурных конструкци и пространственных конструкци из труб и парных уголков высото до 50 м

180-60α

б) пространственных конструкци из одиночных уголков, пространственных конструкци из труб и парных уголков высото св. 50 м

120

2. Элементы, кроме указанных в поз. 1 и 7:

 

а) плоских ферм, сварных пространственных и структурных конструкци из одиночных уголков, пространственных и структурных конструкци из труб и парных уголков

210-60α

б) пространственных и структурных конструкци из одиночных уголков с болтовыми соединениями

220-40α

3. Верхние пояса ферм, незакрепленные в процессе монтажа (предельную гибкость после завершения монтажа следует принимать по поз. 1)

220

4. Основные колонны

180-60α

5. Второстепенные колонны (стоки фахверка, фонаре и т.п.), элементы решетки колонн, элементы вертикальных связе между колоннами (ниже подкрановых балок)

210-60α

6. Элементы связе, кроме указанных в поз. 5, а также стержни, служащие для уменьшения расчетно длины сжатых стержне, и другие ненагруженные элементы, кроме указанных в поз. 7

200

7. Сжатые и ненагруженные элементы пространственных конструкци таврового и крестового сечени, подверженные воздествию ветровых нагрузок, при проверке гибкости в вертикально плоскости

150

Обозначение, принятое в табл. 19*:

 - коэффициент, принимаемы не менее 0,5 (в необходимых случаях вместо φ следует применять φe).

Таблица 20*

Элементы конструкции

Предельная гибкость растянутых элементов при воздествии на конструкцию нагрузок

динамических, приложенных непосредственно к конструкции

статических

от кранов (см. прим. 4) и железнодорожных составов

1. Пояса и опорные раскосы плоских ферм (включая тормозные фермы) и структурных конструкци

250

400

250

2. Элементы ферм и структурных конструкци, кроме указанных в поз. 1

350

400

300

3. Нижние пояса подкрановых балок и ферм

-

-

150

4. Элементы вертикальных связе между колоннами (ниже подкрановых балок)

300

300

200

5. Прочие элементы связе

400

400

300

6*. Пояса, опорные раскосы стоек и траверс, тяги траверс опор лини электропередачи, открытых распределительных устроств и лини контактных сете транспорта

250

-

-

7. Элементы опор лини электропередачи, кроме указанных в поз. 6 и 8

350

-

-

8. Элементы пространственных конструкци таврового и крестового сечени (а в тягах траверс опор лини электропередачи и из одиночных уголков), подверженных воздествию ветровых нагрузок, при проверке гибкости в вертикально плоскости

150

-

-

Примечания: 1. В конструкциях, не подвергающихся динамическим воздествиям, гибкость растянутых элементов следует проверять только в вертикальных плоскостях.

2. Гибкость растянутых элементов, подвергнутых предварительному напряжению, не ограничивается.

3. Для растянутых элементов, в которых при неблагоприятном расположении нагрузки может изменяться знак усилия, предельную гибкость следует принимать как для сжатых элементов, при этом соединительные прокладки в составных элементах необходимо устанавливать не реже чем через 40i.

4. Значения предельных гибкосте следует принимать при кранах групп режимов работы 7К (в цехах металлургических производств) и 8К по ГОСТ 25546-82.

5. К динамическим нагрузкам, приложенным непосредственно к конструкциям, относятся нагрузки, принимаемые в расчетах на выносливость или в расчетах с учетом коэффициентов динамичности.

7. ПРОВЕРКА УСТОЙЧИВОСТИ СТЕНОК И ПОЯСНЫХ ЛИСТОВ ИЗГИБАЕМЫХ И СЖАТЫХ ЭЛЕМЕНТОВ

СТЕНКИ БАЛОК

7.1. Стенки балок для обеспечения их усточивости следует укреплять:

поперечными основными ребрами, поставленными на всю высоту стенки;

поперечными основными и продольными ребрами;

поперечными основными и промежуточными короткими ребрами и продольным ребром (при этом промежуточные короткие ребра следует располагать между сжатым поясом и продольным ребром).

Прямоугольные отсеки стенки (пластинки), заключенные между поясами и соседними поперечными основными ребрами жесткости, следует рассчитывать на усточивость. При этом расчетными размерами проверяемо пластинки являются:

a - расстояние между осями поперечных основных ребер;

hеf - расчетная высота стенки (рис. 10), равная в сварных балках полно высоте стенки, в балках с поясными соединениями на высокопрочных болтах - расстоянию между ближашими к оси балки краями поясных уголков, в балках, составленных из прокатных профиле, - расстоянию между началами внутренних закруглени, в гнутых профилях (рис. 11) - расстоянию между краями выкружек;

t - толщина стенки.

Рис. 10. Расчетная высота стенки составно балки

а - сварно из листов; б - на высокопрочных болтах; в - сварно с таврами

Рис. 11. Схемы поперечных сечени гнутых профиле

7.2*. Расчет на усточивость стенок балок следует выполнять с учетом всех компонентов напряженного состояния (σ, τ и σloc).

Напряжения σ, τ и σloc следует вычислять в предположении упруго работы материала по сечению брутто без учета коэффициента φb.

Сжимающее напряжение σ у расчетно границы стенки, принимаемое со знаком «плюс», и среднее касательное напряжение τ следует вычислять по формулам:

,                                                          (72)

,                                                               (73)

где h - полная высота стенки;

M и Q - средние значения соответственно момента и поперечно силы в пределах отсека; если длина отсека больше его расчетно высоты, то M и Q следует вычислять для более напряженного участка с длино, равно высоте отсека; если в пределах отсека момент или поперечная сила меняют знак, то их средние значения следует вычислять на участке отсека с одним знаком.

Местное напряжение σloc в стенке под сосредоточенно нагрузко следует определять согласно требованиям пп. 5.13 и 13.34* (при γf1 = 1,1) настоящих норм.

В отсеках, где сосредоточенная нагрузка приложена к растянутому поясу, одновременно должны быть учтены только два компонента напряженного состояния: σ и τ или σloc и τ.

Односторонние поясные швы следует применять в балках, в которых при проверке усточивости стенок значения лево части формулы (74) не превышают 0,9γс при  < 3,8 и γс при  ≥ 3,8.

7.3. Усточивость стенок балок не требуется проверять, если при выполнении услови (33) условная гибкость стенки  не превышает значени:

3,5 -   при отсутствии местного напряжения в балках с двусторонними поясными швами;

3,2 -   то же, в балках с односторонними поясными швами;

2,5 -   при наличии местного напряжения в балках с двусторонними поясными швами.

При этом следует устанавливать поперечные основные ребра жесткости согласно требованиям пп. 7.10, 7.12 и 7.13 настоящих норм.

7.4*. Расчет на усточивость стенок балок симметричного сечения, укрепленных только поперечными основными ребрами жесткости, при отсутствии местного напряжения (σloc = 0) и условно гибкости стенки   6 следует выполнять по формуле

,                                                 (74)

где γc - коэффициент, принимаемы по табл. 6* настоящих норм;

;                                                             (75)

;                                                  (76)

В формуле (75) коэффициент сcr следует принимать:

для сварных балок - по табл. 21 в зависимости от значения коэффициента δ:

Таблица 21

δ

≤0,8

1,0

2,0

4,0

6,0

10,0

30

ccr

30,0

31,5

33,3

34,6

34,8

35,1

35,5

,                                                        (77)

где bf и tf - соответственно ширина и толщина сжатого пояса балки;

β - коэффициент, принимаемы по табл. 22;

для балок на высокопрочных болтах сcr = 35,2.

Таблица 22

Балки

Условия работы сжатого пояса

β

Подкрановые

Крановые рельсы не приварены

2

Крановые рельсы приварены

Прочие

При непрерывном опирании плит

В прочих случаях

0,8

Примечание. Для отсеков подкрановых балок, где сосредоточенная нагрузка приложена к растянутому поясу, при вычислении коэффициента δ следует принимать β = 0,8.

В формуле (76) ,

где d - меньшая из сторон пластинки (hef или a);

μ - отношение больше стороны пластинки к меньше.

7.5. Расчет на усточивость стенок балок симметричного сечения с учетом развития пластических деформаци при отсутствии местного напряжения (σloc = 0) и при τ ≤ 0,9Rs, Af / Aw ≥ 0,25, 2,2 < ≤6 следует выполнять по формуле

MRy γc h2eft (Af / Aw + α),                                             (78)

где

α = 0,24 - 0,15 (τ / Rs)2 - 8,5 · 10-3 ( - 2,2)2;

здесь τс следует принимать по табл. 6*, а τ - определять по формуле (73).

7.6*. Расчет на усточивость стенок балок симметричного сечения, укрепленных только поперечными основными ребрами жесткости (рис. 12), при наличии местного напряжения (σloc ≠ 0) следует выполнять по формуле

,                                           (79)

где γс - следует принимать по табл. 6* настоящих норм;

σ, σloc; τ - определять согласно требованиям п. 7.2*;

τcr - определять по формуле (76).

Значения σcr и σloc,cr в формуле (79) следует определять:

а) при a / hef 0,8

σcr - по формуле (75);

,                                                          (80)

Рис. 12. Схема балки, укрепленно поперечными основными ребрами жесткости (1)

а - сосредоточенная нагрузка F приложена к сжатому поясу; б - то же, к растянутому поясу

где c1 - коэффициент, принимаемы для сварных балок по табл. 23 в зависимости от отношения a / hef и значения δ, вычисляемого по формуле (77), а для балок на высокопрочных болтах - по табл. 23, а;

.

Если нагружен растянуты пояс, то при расчете стенки с учетом только σloc и τ при определении коэффициента δ по формуле (77) за bf и tf следует принимать соответственно ширину и толщину нагруженного растянутого пояса;

б) при a / hef > 0,8 и отношении σloc / σ больше значени, указанных в табл. 24,

σcr - по формуле ,                                                                                           (81)

где с2 - коэффициент, определяемы по табл. 25;

σloc,cr - по формуле (80), в которо при a / hef > 2 следует принимать а = 2hef;

в) при a / hef > 0,8 и отношении σloc,cr / σ не более значени, указанных в табл. 24:

σcr - по формуле (75);

σloc,cr - по формуле (80), но с подстановко 0,5a вместо а при вычислении  в формуле (80) и в табл. 23.

Во всех случаях τcr следует вычислять по дествительным размерам отсека.

7.7. В стенке балки симметричного сечения, укрепленно кроме поперечных основных ребер одним продольным ребром жесткости, расположенным на расстоянии h1 от расчетно жато) границы отсека (рис. 13), обе пластинки, на которые это ребро разделяет отсек, следует рассчитывать отдельно:

а) пластинку 3, расположенную между сжатым поясом и продольным ребром, по формуле

σ / σcr1 + σloc / σloc,cr1 + (τ / τcr1)2γc,                                     (82)

где γc следует принимать по табл. 6* настоящих норм, а σ, σloc и τ - определять согласно требованиям п. 7.2*.

Таблица 23

δ

Значения с1, для сварных балок при a / hef, равном

≤0,5

0,6

0,8

1,0

1,2

1,4

1,6

1,8

≥2,0

1

11,5

12,4

14,8

18,0

22,1

27,1

32,6

38,9

45,6

2

12,0

13,0

16,1

20,4

25,7

32,1

39,2

46,5

55,7

4

12,3

13,3

16,6

21,6

28,1

36,3

45,2

54,9

65,1

6

12,4

13,5

16,8

22,1

29,1

38,3

48,7

59,4

70,4

10

12,4

13,6

16,9

22,5

30,0

39,7

51,0

63,3

76,5

30

12,5

13,7

17,0

22,9

31,0

41,6

53,8

68,2

83,6

Таблица 23,а

a / hef

0,5

0,6

0,8

1,0

1,2

1,4

1,6

1,8

2,0

c1

13,7

15,9

20,8

28,4

38,7

51,0

64,2

79,8

94,9

Таблица 24

Балки

δ

Предельные значения σloc при a / hef, равном

0,8

0,9

1,0

1,2

1,4

1,6

1,8

≥2,0

Сварные

≤1

0

0,146

0,183

0,267

0,359

0,445

0,540

0,618

2

0

0,109

0,169

0,277

0,406

0,543

0,652

0,799

4

0

0,072

0,129

0,281

0,479

0,711

0,930

1,132

6

0

0,066

0,127

0,288

0,536

0,874

1,192

1,468

10

0

0,059

0,122

0,296

0,574

1,002

1,539

2,154

30

0

0,047

0,112

0,300

0,633

1,283

2,249

3,939

На высокопрочных болтах

-

0

0,121

0,184

0,378

0,643

1,131

1,614

2,347

Таблица 25

a / hef

≤0,8

0,9

1,0

1,2

1,4

1,6

1,8

≥2,0

c2

По табл. 21, т.е. с2 = сcr

37,0

39,2

45,2

52,8

62,0

72,6

84,7

Рис. 13. Схема балки, укрепленно поперечными основными ребрами и продольным ребром жесткости

a - сосредоточенная нагрузка F приложена к сжатому поясу; б - то же, к растянутому; 1 - поперечное основное ребро жесткости; 2 - продольное ребро жесткости; 3 - пластинка у сжатого пояса; 4 - пластинка у растянутого пояса

Значения σcr1 и σloc,cr1 следует определять по формулам:

при σloc = 0

,                                                    (83)

где

;

при σloc ≠ 0 и μ1 = a / h1 ≤ 2

;                                                    (84)

,                                          (85)

где                                                         ,                                                     (86)

Если a / h1 > 2, то при вычислении σcr1 и σloc,cr1 следует принимать a = 2h1; τcr1 необходимо определять по формуле (76) с подстановко в нее размеров проверяемо пластинки;

б) пластинку 4, расположенную между продольным ребром и растянутым поясом, - по формуле

,                             (87)

где                                                 ;                                              (88)

σloc,cr2 - следует определять по формуле (80) и табл. 23 при δ = 0,8, заменяя значение отношения a / hef значением a/(hef - h1);

τcr2 - следует определять по формуле (76) с подстановко в нее размеров проверяемо пластинки;

σloc2 = 0,4σloc -     при приложении нагрузки к сжатому поясу (рис. 13, а);

σloc2 = σloc - при приложении нагрузки к растянутому поясу (рис. 13, б).

Коэффициент γс следует определять по табл. 6* настоящих норм.

7.8. При укреплении пластинки 3 дополнительными короткими поперечными ребрами их следует доводить до продольного ребра (рис. 14).

Рис. 14. Схема балки, укрепленно поперечными основными ребрами жесткости (1), продольным ребром жесткости (2), разделяющим отсек стенки на пластинку (3) у сжатого пояса и пластинку (4) у растянутого пояса, а также короткими ребрами жесткости (5)

В этом случае расчет пластинки 3 следует выполнять по формулам (82) - (86), в которых величину а следует заменять величино а1, где а1 - расстояние между осями соседних коротких ребер (рис. 14); расчет пластинки 4 следует выполнять согласно требованиям п. 7.7, б.

7.9. Расчет на усточивость стенок балок асимметричного сечения (с более развитым сжатым поясом) следует выполнять по формулам пп. 7.4*, 7.6*-7.8 с учетом следующих изменени:

для стенок, укрепленных только поперечными ребрами жесткости, в формулах (75) и (81) и табл. 25 значение hef следует принимать равным удвоенному расстоянию от нетрально оси до расчетно (сжато) границы отсека. При a / hef > 0,8 и σloc 0 следует выполнять оба расчета, указанные в пп. 7.6*, б и 7.6*, в, независимо от значения σlос / σ;

для стенок, укрепленных поперечными ребрами и одним продольным ребром, расположенным в сжато зоне:

а) в формулы (83), (84) и (87) вместо h1/hef следует подставлять ;

б) в формулу (88) вместо (0,5 - h1/hef) следует подставлять .

Здесь ,

где σt - краевое растягивающее напряжение (со знаком «минус») у расчетно границы отсека.

В случае развитого растянутого (ненагруженного) пояса расчет на усточивость при одновременном дествии напряжени σ и τ следует производить по формуле (90).

7.10. Стенки балок следует укреплять поперечными ребрами жесткости, если значения условно гибкости стенки балки  превышают 3,2 при отсутствии подвижно нагрузки и 2,2 - при наличии подвижно нагрузки на поясе балки.

Расстояние между основными поперечными ребрами не должно превышать 2hef при  > 3,2 и 2,5hef при  ≤ 3,2.

Допускается превышать указанные выше расстояния между ребрами до значения 3hef при условии, что стенка балки удовлетворяет проверкам по пп. 7.4*, 7.6*-7.9 и общая усточивость балки обеспечена выполнением требовани п. 5.16*, а или 5.16*, б, причем значения lef / b для сжатого пояса не должны превышать значени, определяемых по формулам табл. 8* для нагрузки, приложенно к верхнему поясу.

В местах приложения больших неподвижных сосредоточенных грузов и на опорах следует устанавливать поперечные ребра.

В стенке, укрепленно только поперечными ребрами, ширина их выступающе части bh должна быть для парного симметричного ребра не менее hеf / 30 + 40 мм, для одностороннего ребра - не менее hеf / 24 + 50 мм; толщина ребра ts должна быть не менее .

Стенки балок допускается укреплять односторонними поперечными ребрами жесткости из одиночных уголков, привариваемых к стенке пером. Момент инерции такого ребра, вычисляемы относительно оси, совпадающе с ближаше к ребру гранью стенки, должен быть не меньше, чем для парного симметричного ребра.

7.11. При укреплении стенки одним продольным ребром необходимые моменты инерции Js сечени ребер жесткости следует определять:

для поперечных ребер - по формуле

Js = 3heft3;                                                           (89)

для продольного ребра - по формулам табл. 21 с учетом его предельных значени.

При расположении продольного и поперечных ребер с одно стороны стенки моменты инерции сечени каждого из них вычисляются относительно оси, совпадающе с ближаше к ребру гранью стенки.

Таблица 26

h1/hef

Необходимы момент инерции сечения продольного ребра Jsl

Предельные значения

минимальные Jsl,min

максимальные Jsl,max

0,20

(2,5 - 0,5a / hef) × a2t3 / hef

1,5heft3

7heft3

0,25

(1,5 - 0,4a / hef) × a2t3 / hef

1,5heft3

3,5heft3

0,30

1,5heft3

-

-

Примечание. При вычислении Jsl для промежуточных значени h1/hef допускается линеная интерполяция.

Минимальные размеры выступающе части поперечных и продольных ребер жесткости следует принимать согласно требованиям п. 7.10.

7.12. Участок стенки балки составного сечения над опоро при укреплении его ребрами жесткости следует рассчитывать на продольны изгиб из плоскости как стоку, нагруженную опорно реакцие. В расчетное сечение это стоки следует включать сечение ребра жесткости и полосы стенки ширино 0,65t с каждо стороны ребра. Расчетную длину стоки следует принимать равно высоте стенки.

Нижние торцы опорных ребер (рис. 15) должны быть остроганы либо плотно пригнаны или приварены к нижнему поясу балки. Напряжения в этих сечениях при дествии опорно реакции не должны превышать: в первом случае (рис. 15, а) - расчетного сопротивления прокатно стали смятию Rp при а 1,5t и сжатию Ry при а > 1,5t; во втором случае (рис. 15, б) - смятию Rp.

Рис. 15. Схема устроства опорного ребра жесткости

a - в торце с применением строжки; б - удаленного от торца с плотно пригонко или приварко к нижнему поясу

В случае приварки опорного ребра к нижнему поясу балки сварные швы должны быть рассчитаны на воздествие опорно реакции.

7.13. Одностороннее ребро жесткости, расположенное в месте приложения к верхнему поясу сосредоточенно нагрузки, следует рассчитывать как стоку, сжатую с эксцентриситетом, равным расстоянию от срединно плоскости стенки до центра тяжести расчетного сечения стоки. В расчетное сечение это стоки необходимо включать сечение ребра жесткости и полосы стенки ширино 0,65t с каждо стороны ребра. Расчетную длину стоки следует принимать равно высоте стенки.

СТЕНКИ ЦЕНТРАЛЬНО ВНЕЦЕНТРЕННО-СЖАТЫХ И СЖАТО-ИЗГИБАЕМЫХ ЭЛЕМЕНТОВ

7.14*. Отношение расчетно высоты стенки к толщине hef / t в центрально-сжатых (т = 0), а также во внецентренно-сжатых и сжато-изгибаемых элементах по рис. 16* (т > 0), кроме случаев, указанных в п. 7.16*, как правило, не должно превышать значени , где значения  следует определять по табл. 27*.

Рис. 16*. Схема внецентренно-сжатых элементов двутаврового и коробчатого сечени

7.15. Исключен с табл. 28.

7.16*. Для внецентренно-сжатых и сжато-изгибаемых элементов двутаврового и коробчатого сечени (рис. 16*), рассчитываемых по формуле (56), отношение расчетно высоты стенки hef к толщине t следует определять в зависимости от значения α = (σ - σ1) / σ (σ - наибольшее сжимающее напряжение у расчетно границы стенки, принимаемое со знаком «плюс» и вычисленное без учета коэффициентов φe, φexy или cφ; σ1 - соответствующее напряжение у противоположно расчетно границы стенки) и принимать не более значени, определяемых:

при α ≤ 0,5 - по п. 7.14* настоящих норм;

  «    α 1 - по формуле

,                                    (90)

где β = 1,4 (2α - 1)  - (здесь  - среднее касательное напряжение в рассматриваемом сечении);

при 0,5 < α < 1 - линено интерполяцие между значениями, вычисленными при α = 0,5 и α = 1.

7.17*. Для внецентренно-сжатых и сжато-изгибаемых элементов с сечениями, отличными от двутаврового и коробчатого (за исключением таврового сечения), установленные в п. 7.16* значения отношени hef / t следует умножать на коэффициент 0,75.

7.18*. Для центрально-, внецентренно-сжатых и сжато-изгибаемых элементов таврового сечения с условно гибкостью  от 0,8 до 4 отношение расчетно высоты стенки тавра к толщине при 1 ≤ bf / hef ≤ 2 не должно превышать значени, определяемых по формуле

,                                 (91)*

где bf - ширина полки тавра;

hef - расчетная высота стенки тавра.

При значениях  < 0,8 или  > 4 в формуле (91)* следует принимать соответственно  = 0,8 или  = 4.

При назначении сечения элемента по предельно гибкости, а также при соответствующем обосновании расчетом наибольшие значения hef / t следует умножать на коэффициент  (где φm = φ или φm = φе, σ = N / A), но не более чем на 1,25.

Таблица 27

Относительны эксцентриситет

Сечение элемента

Значение  и

Формулы для определения

т = 0

Двутавровое

 < 2,0

 = 1,30 + 0,152

 ≥ 2,0

 = 1,20 + 0,35, но не более 2,3

Коробчатое, швеллерное прокатное

 < 1,0

 = 1,2

 1,0

 = 1,0 + 0,2, но не более 1,6

Швеллерное, кроме прокатного

 < 0,8

 = 1,0

 ≥ 0,8

 = 0,85 + 0,19, но не более 1,6

m ≥ 1,0

Двутавровое, коробчатое

 < 2,0

 = 1,30 + 0,152

 ≥ 2,0

 = 1,20 + 0,35, но не более 3,1

Обозначения, принятые в табл. 27*:

 - условная гибкость элемента, принимаемая в расчете на усточивость при центральном сжатии;

 - условная гибкость элемента, принимаемая в расчете на усточивость в плоскости дествия момента.

Примечания: 1. К коробчатым относятся замкнутые прямоугольные профили (составные, гнутые прямоугольные и квадратные).

2. В коробчатом сечении при т > 0 значение  следует определять для стенки, параллельно плоскости изгибающего момента.

3. При значениях 0 < т < 1,0 значение  следует определять линено интерполяцие между значениями, вычисленные при т = 0 и m = 1,0.

7.19*. В центрально-сжатых элементах двутаврового сечения для стенок, имеющих расчетную высоту hef и укрепленных парным продольным ребром, расположенным посредине, значение hef / t, установленное в п. 7.14*, следует умножать на коэффициент ß, определяемы при Jsl/(heft3) 6 по формуле

,                                          (92)*

где Jsl - момент инерции сечения продольного ребра.

При укреплении стенки внецентренножатого или сжато-изгибаемого элемента продольным ребром жесткости с моментом инерции Jsl 6heft3, расположенным посредине стенки, наиболее нагруженную часть стенки между поясом и осью ребра следует рассматривать как самостоятельную пластинку и проверять согласно требованиям п. 7.14* или 7.16*.

При расположении ребра с одно стороны стенки его момент инерции должен вычисляться относительно оси, совмещенно с ближаше гранью стенки.

Продольные ребра жесткости следует включать в расчетные сечения элементов.

В случае выполнения продольного ребра в виде гофра стенки при вычислении hef следует учитывать развернутую длину гофра.

Минимальные размеры выступающе части продольных ребер жесткости следует принимать согласно требованиям п. 7.10 настоящих норм.

7.20*. В случаях, когда фактическое значение hef / t превышает значение, определяемое по п. 7.14* (для центрально-сжатых элементов не более чем в два раза), в расчетных формулах за значение A следует принимать значение Ared, вычисленное с высото стенки hred (в коробчатом сечении определяются hred и hred1 для пластинок, образующих сечение и расположенных соответственно параллельно и перпендикулярно плоскости изгиба):

для двутаврового и швеллерного сечени Ared = А - (hef - hred)t;

для коробчатого сечения:

при центральном сжатии Ared = А - 2(hef - hred)t - 2(hef1 - hred1)t1;

при внецентренном сжатии и сжатии с изгибом Ared = А - 2(hef - hred)t.

Значения hred следует определять:

для центрально-сжатых элементов швеллерного сечения по формуле

,                                                       (92, a)

где  - условная гибкость стенки швеллерного сечения, принимаемая по табл. 27*;

для центрально-сжатых элементов двутаврового и коробчатого сечени по формуле

,                                   (92, б)

где  - условная гибкость стенки соответствующего сечения, принимаемая по табл. 27* при т = 0;

 - условная гибкость стенки, при вычислении hred, принимаемая равно ;

k - коэффициент, принимаемы равным для двутаврового сечения k = 1,2 + 0,15 (при  > 3,5 следует принимать  = 3,5) и для коробчатого сечения k = 2,9 + 0,2 - 0,7, (при  > 2,3 следует принимать  = 2,3); здесь  - условная гибкость элемента, принятая по табл. 27*;

для внецентренно-сжатых и сжато-изгибаемых элементов по формуле (92, б), где значение  следует вычислять по табл. 27*, а значение k при  = .

Указанные изменения расчетно высоты стенки следует принимать только для определения площади сечения A при расчетах по формулам (7), (51), (61) и (62) настоящих норм.

7.21*. Стенки сплошных колонн при hef / t ≥ 2,3 следует укреплять поперечными ребрами жесткости, расположенными на расстоянии (2,5-3)hef одно от другого; на каждом отправочном элементе должно быть не менее двух ребер.

Минимальные размеры выступающе части поперечных ребер жесткости следует принимать согласно требованиям п. 7.10 настоящих норм.

ПОЯСНЫЕ ЛИСТЫ (ПОЛКИ) ЦЕНТРАЛЬНО-, ВНЕЦЕНТРЕННО-СЖАТЫХ, СЖАТО-ИЗГИБАЕМЫХ И ИЗГИБАЕМЫХ ЭЛЕМЕНТОВ

7.22*. Расчетную ширину свеса поясных листов (полок) bef следует принимать равно расстоянию: в сварных элементах - от грани стенки (при односторонних швах от грани стенки со стороны шва) до края поясного листа (полки); в прокатных профилях - от начала внутреннего закругления до края полки; в гнутых профилях (рис. 11) - от края выкружки стенки до края поясного листа (полки).

7.23*. В центрально-, внецентренно-сжатых и сжато-изгибаемых элементах с условно гибкостью  от 0,8 до 4 отношение расчетно ширины свеса поясного листа (полки) bef к толщине t следует принимать не более значени, определяемых по формулам табл. 29*.

При значениях  < 0,8 или  > 4 в формулах табл. 29* следует принимать соответственно  = 0,8 или  = 4.

7.24. В изгибаемых элементах отношение ширины свеса сжатого пояса bef к толщине t следует принимать не более значени, определяемых по табл. 30.

Таблица 29*

Характеристика полки (поясного листа) и сечения элемента

Наибольшие отношения

Неокамленная двутавра и тавра

Окамленная ребром двутавра и тавра

Неокамленная равнополочных уголков и гнутых профиле (за исключением швеллера)

Окамленная ребром равнополочных уголков и гнутых профиле

Неокамленная большая неравнополочного уголка и полка швеллера

Окамленная ребром и усиленная планками гнутых профиле

7.25. Высота окамляющего ребра полки aef, измеряемая от ее оси, должна быть не менее 0,3bef в элементах, не усиленных планками (рис. 11) и 0,2bеf - в элементах, усиленных планками, при этом толщина ребра должна быть не менее 2aef.

7.26*. В центрально-сжатых элементах коробчатого сечения наибольшее отношение расчетно ширины пояса к толщине bef / t следует принимать по табл. 27* как для стенок коробчатого сечения.

Во внецентренно-сжатых и сжато-изгибаемых элементах коробчатого сечения наибольшее отношение bef / t следует принимать:

при т 0,3 - как для центрально-сжатых элементов;

при т ≥ 1,0 и   2 + 0,04m                  ;

при т 1,0 и  > 2 + 0,04m                  .

При значениях относительного эксцентриситета 0,3 < m <1 наибольшие отношения bef / t следует определять линено интерполяцие между значениями bef / t, вычисленными при m = 0,3 и m = 1.

Таблица 30

Расчет изгибаемых элементов

Характеристика свеса

Наибольшие значения отношения

В пределах упругих деформаци

Неокамленны

Окамленны ребром

С учетом развития пластических деформаци1

Неокамленны

bef / t = 0,11hef / tw, но не более

Окамленны ребром

bef / t = 0,16hef / tw, но не более

1 При hef / tw  наибольшее значение отношения bef / t следует принимать:

для неокамленного свеса bef / t = ;

для окамленного ребром свеса bef / t = .

Обозначения, принятые в табл. 30:

hef - расчетная высота балки;

tw - толщина стенки балки.

7.27*. При назначении сечени центрально-, внецентренно-сжатых и сжато-изгибаемых элементов по предельно гибкости, а изгибаемых элементов - по предельным прогибам, а также при соответствующем обосновании расчетом наибольшие значения отношения расчетно ширины свеса к толщине bef / t следует умножать на коэффициент , но не более чем на 1,25.

Здесь следует принимать:

для центрально-, внецентренножатых и сжато-изгибаемых элементов: φm - меньшее из значени φ, φe, φexy, , использованное при проверке усточивости элемента; σ = N / A;

для изгибаемых элементов: φm = 1; σ - большее из двух значени  или .

8. РАСЧЕТ ЛИСТОВЫХ КОНСТРУКЦИЙ

РАСЧЕТ НА ПРОЧНОСТЬ

8.1. Расчет на прочность листовых конструкци (оболочек вращения), находящихся в безмоментном напряженном состоянии, следует выполнять по формуле

,                                               (93)

где σх и σу -   нормальные напряжения по двум взаимно перпендикулярным направлениям;

γс -  коэффициент услови работы конструкци, назначаемы в соответствии с требованиями СНиП по проектированию сооружени промышленных предприяти.

При этом абсолютные значения главных напряжени должны быть не более значени расчетных сопротивлени, умноженных на γс.

8.2. Напряжения в безмоментных тонкостенных оболочках вращения (рис. 17), находящихся под давлением жидкости, газа или сыпучего материала, следует определять по формулам:

;                                                          (94)

,                                                         (95)

где σ1 и σ2 - соответственно меридиональное и кольцевое напряжения;

r1 и r2 -  радиусы кривизны в главных направлениях срединно поверхности оболочки;

р - расчетное давление на единицу поверхности оболочки;

t -  толщина оболочки;

F -   проекция на ось z-z оболочки полного расчетного давления, дествующего на часть оболочки abc (рис. 17);

r и β -   радиус и угол, показанные на рис. 17.

Рис. 17. Схема оболочки вращения

Рис. 18. Схема коническо оболочки вращения

8.3. Напряжения в замкнутых безмоментных тонкостенных оболочках вращения, находящихся под внутренним равномерным давлением, следует определять по формулам:

для цилиндрических оболочек

 и ;                                                    (96)

для сферических оболочек

;                                                           (97)

для конических оболочек

 и ;                                                 (98)

где p - расчетное внутреннее давление на единицу поверхности оболочки;

r - радиус срединно поверхности оболочки (рис. 18);

β - угол между образующе конуса и его осью z-z (рис. 18).

8.4. В местах изменения формы или толщины оболочек, а также изменения нагрузки должны быть учтены местные напряжения (краево эффект).

РАСЧЕТ НА УСТОЙЧИВОСТЬ

8.5. Расчет на усточивость замкнутых круговых цилиндрических оболочек вращения, равномерно сжатых параллельно образующим, следует выполнять по формуле

σ1γcσcr1,                                                              (99)

где σ1 - расчетное напряжение в оболочке;

σcr1 - критическое напряжение, равное меньшему из значени ψRy или cEt / r (здесь r - радиус срединно поверхности оболочки; t - толщина оболочки).

Значения коэффициентов ψ при 0 < r / t ≤ 300 следует определять по формуле

.                                        (100)

Значения коэффициентов с следует определять по табл. 31.

Таблица 31

r / t

100

200

300

400

600

800

1000

1500

2500

с

0,22

0,18

0,16

0,14

0,11

0,09

0,08

0,07

0,06

В случае внецентренного сжатия параллельно образующим или чистого изгиба в диаметрально плоскости при касательных напряжениях в месте наибольшего момента, не превышающих значени 0,07 E (t / r)3/2, напряжение σcr1 должно быть увеличено в (1,1 - 0,1 σ΄1/σ1) раз, где σ΄1 - наименьшее напряжение (растягивающие напряжения считать отрицательными).

8.6. В трубах, рассчитываемых как сжатые или сжато-изгибаемые стержни, при условно гибкости  должно быть выполнено условие

.                                                    (101)

Такие трубы следует рассчитывать на усточивость в соответствии с требованиями разд. 5 настоящих норм независимо от расчета на усточивость стенок. Расчет на усточивость стенок бесшовных или электросварных труб не требуется, если значение r / t не превышает половины значени, определяемых по формуле (101).

8.7. Цилиндрическая панель, опертая по двум образующим и двум дугам направляюще, равномерно сжатая вдоль образующих, при b2/(rt) 20 (где b - ширина панели, измеренная по дуге направляюще) должна быть рассчитана на усточивость как пластинка по формулам:

при расчетном напряжении σ 0,8 Ry

;                                                               (102)

при расчетном напряжении σ = Ry

.                                                     (103)

При 0,8Ry < σ < Ry наибольшее отношение b/t следует определять линено интерполяцие.

Если b2/(rt) > 20, панель следует рассчитывать на усточивость как оболочку согласно требованиям п. 8.5.

8.8*. Расчет на усточивость замкнуто кругово цилиндрическо оболочки вращения при дествии внешнего равномерного давления р, нормального к боково поверхности, следует выполнять по формуле

σ2γcσcr2,                                                               (104)

где σ2 = pr / t - расчетное кольцевое напряжение в оболочке;

σcr2 - критическое напряжение, определяемое по формулам:

при 0,5 l / r 10

σcr2 = 0,55E (r / l) (t / r)3/2;                                              (105)

при l / r 20

σcr2 = 0,17E (t / r)2;                                                     (106)

при 10 < l / r < 20 напряжение σcr2 следует определять линено интерполяцие.

Здесь l длина цилиндрическо оболочки.

Та же оболочка, но укрепленная кольцевыми ребрами, расположенными с шагом s 0,5r между осями, должна быть рассчитана на усточивость по формулам (104)-(106) с подстановко в них значения s вместо l.

В этом случае должно быть удовлетворено условие усточивости ребра в свое плоскости как сжатого стержня согласно требованиям п. 5.3 при N = prs и расчетно длине стержня lef = 1,8r, при этом в сечение ребра следует включать участки оболочки ширино 0,65t с каждо стороны от оси ребра, а условная гибкость стержня  не должна превышать 6,5.

При одностороннем ребре жесткости его момент инерции следует вычислять относительно оси, совпадающе с ближаше поверхностью оболочки.

8.9. Расчет на усточивость замкнуто кругово цилиндрическо оболочки вращения, подверженно одновременному дествию нагрузок, указанных в пп. 8.5 и 8.8*, следует выполнять по формуле

,                                                     (107)

где σcr1 должно быть вычислено согласно требованиям п. 8.5, а σcr2 - согласно требованиям п. 8.8*.

8.10. Расчет на усточивость коническо оболочки вращения с углом конусности β 60°, сжато сило N вдоль оси (рис. 19) следует выполнять по формуле

NγcNcr,                                                           (108)

где Ncr - критическая сила, определяемая по формуле

Ncr = 6,28rmcr1cos2β,                                                 (109)

здесь t - толщина оболочки;

σcr1 - значение напряжения, вычисленное согласно требованиям п. 8.5 с замено радиуса r радиусом rm, равным

.                                                   (110)

Рис. 19. Схема коническо оболочки вращения под дествием продольного усилия сжатия

8.11. Расчет на усточивость коническо оболочки вращения при дествии внешнего равномерного давления p, нормального к боково поверхности, следует выполнять по формуле

σ2γcσcr2,                                                          (111)

здесь σ2 = prm / t - расчетное кольцевое напряжение в оболочке;

σcr2 - критическое напряжение, определяемое по формуле

σcr2 = 0,55E (rm / h)(t / rm)3/2,                                      (112)

где h - высота коническо оболочки (между основаниями);

rт - радиус, определяемы по формуле (110).

8.12. Расчет на усточивость коническо оболочки вращения, подверженно одновременному дествию нагрузок, указанных в пп. 8.10 и 8.11, следует выполнять по формуле

,                                                     (113)

где значения Ncr и σcr2 следует вычислять по формулам (109) и (112).

8.13. Расчет на усточивость полно сферическо оболочки (или ее сегмента) при r / t 750 и дествии внешнего равномерного давления p, нормального к ее поверхности, следует выполнять по формуле

σγcσcr,                                                            (114)

где σ = prm/2t - расчетное напряжение;

σcr = 0,1Et / r -  критическое напряжение принимаемое не более Ry;

r - радиус срединно поверхности сферы.

ОСНОВНЫЕ ТРЕБОВАНИЯ К РАСЧЕТУ МЕТАЛЛИЧЕСКИХ МЕМБРАННЫХ КОНСТРУКЦИЙ

8.14. При расчете мембранных конструкци опирание кромок мембраны на упругие элементы контура следует считать шарнирным по линии опирания и способным передавать сдвиг на элементы контура.

8.15. Расчет мембранных конструкци должен производиться на основе совместно работ мембраны и элементов контура с учетом их деформированного состояния и геометрическо нелинености мембраны.

8.16. Нормальные и касательные напряжении, распределенные по кромкам мембраны, следуя считать уравновешенными сжатием и изгибом опорного контура в тангенциально плоскости.

При расчете опорных элементов контура мембранных конструкци следует учитывать:

изгиб в тангенциально плоскости;

осевое сжатие в элементах контура;

сжатие, вызываемое касательными напряжениями по линии контакта мембраны с элементами контура;

изгиб в вертикально плоскости.

8.17. При прикреплении мембраны с эксцентриситетом относительно центра тяжести сечения элементов контура кроме факторов, указанных в п. 8.16, при расчете контуров следует учитывать кручение.

8.18. При определении напряжени в центре круглых в плане плоских мембран допускается принимать, что опорны контур является недеформируемым.

8.19. Для определения напряжени в центре эллиптическо мембраны, закрепленно на деформируемом контуре, допускается применять требования п. 8.18 при условии замены значения радиуса значением больше главно полуоси эллипса (отношение больше полуоси к меньше должно быть не более 1,2).

9. РАСЧЕТ ЭЛЕМЕНТОВ СТАЛЬНЫХ КОНСТРУКЦИЙ НА ВЫНОСЛИВОСТЬ

9.1. Стальные конструкции и их элементы (подкрановые балки, балки рабочих площадок, элементы конструкци бункерных и разгрузочных эстакад, конструкции под двигатели и др.), непосредственно воспринимающие многократно дествующие подвижные, вибрационные или другого вида нагрузки с количеством циклов нагружени 105 и более, которые могут привести к явлению усталости, следует проектировать с применением таких конструктивных решени, которые не вызывают значительно концентрации напряжени, и проверять расчетом на выносливость.

Таблица 32*

Группы элементов

Значения Rv при временном сопротивлении стали разрыву Run, МПа (кгс/см2)

до 420 (4300)

св. 420 (4300)

до 440 (4500)

св. 440 (4500)

до 520 (5300)

св. 520 (5300)

до 580 (5900)

св. 580 (5900)

до 635 (6500)

1

120 (1220)

128 (1300)

132 (1350)

136 (1390)

145 (1480)

2

100 (1020)

106 (1080)

108 (1100)

110 (1120)

116 (1180)

3

Для всех марок стали    90 (920)

4

То же                75 (765)

5

    «                   60 (610)

6

    «                   45 (460)

7

    «                   36 (370)

8

    «                   27 (275)

Количество циклов нагружени следует принимать по технологическим требованиям эксплуатации.

Конструкции высоких сооружени типа антенн, дымовых труб, мачт, башен и подъемно-транспортных сооружени, проверяемые на резонанс от дествия ветра, следует проверять расчетом на выносливость.

Расчет конструкци на выносливость следует производить на дествие нагрузок, устанавливаемых согласно требованиям СНиП по нагрузкам и воздествиям.

9.2*. Расчет на выносливость следует производить по формуле

σmaxαRvγv,                                                       (115)

где Rv - расчетное сопротивление усталости, принимаемое по табл. 32* в зависимости от временного сопротивления стали и групп элементов конструкци, приведенных в табл. 83*;

α - коэффициент, учитывающи количество циклов нагружени n и вычисляемы:

при n < 3,9 · 106 по формулам:

для групп элементов 1 и 2

;                                    (116)

для групп элементов 3-8

;                                     (117)

при п 3,9 · 106      α = 0,77;

γv - коэффициент, определяемы по табл. 33 в зависимости от вида напряженного состояния и коэффициента асимметрии напряжени p = σmin / σmax; здесь σmах и σmin - соответственно наибольшее и наименьшее по абсолютному значению напряжения в рассчитываемом элементе, вычисленные по сечению нетто без учета коэффициента динамичности и коэффициентов φ, φе, φb. При разнозначных напряжениях коэффициент асимметрии напряжени следует принимать со знаком «минус».

При расчетах на выносливость по формуле (115) произведение αRvγv не должно превышать Ru / γu.

Таблица 33

σmax

Коэффициент асимметрии напряжени ρ

Формулы для вычисления коэффициента γv

Растяжение

-1 ρ 0

0 < ρ 0,8

0,8 < ρ < 1

Сжатие

-1 ρ < 1

9.3. Стальные конструкции и их элементы, непосредственно воспринимающие нагрузки с количеством циклов нагружени менее 105, следует проектировать с применением таких конструктивных решени, которые не вызывают значительно концентрации напряжени, и в необходимых случаях проверять расчетом на малоцикловую прочность.

10. РАСЧЕТ ЭЛЕМЕНТОВ СТАЛЬНЫХ КОНСТРУКЦИЙ НА ПРОЧНОСТЬ С УЧЕТОМ ХРУПКОГО РАЗРУШЕНИЯ

Центрально- и внецентренно-растянутые элементы, а также зоны растяжения изгибаемых элементов конструкци, возводимых в климатических раонах I1, I2, II2, II3, II4 и II5, следует проверять на прочность с учетом сопротивления хрупкому разрушению по формуле

σmaxβRu / γu,                                                    (118)

где σmах -  наибольшее растягивающее напряжение в расчетном сечении элемента, вычисленное по сечению нетто без учета коэффициентов динамичности и φb;

β -    коэффициент, принимаемы по табл. 84.

Элементы, проверяемые на прочность с учетом хрупкого разрушения, следует проектировать с применением решени, при которых не требуется увеличивать площадь сечения, установленную расчетом согласно требованиям разд. 5 настоящих норм.

11. РАСЧЕТ СОЕДИНЕНИЙ СТАЛЬНЫХ КОНСТРУКЦИЙ

СВАРНЫЕ СОЕДИНЕНИЯ

11.1*. Расчет сварных стыковых соединени на центральное растяжение или сжатие следует производить по формуле

,                                                         (119)

где t -  наименьшая толщина соединяемых элементов;

lw -  расчетная длина шва, равная полно его длине, уменьшенно на 2t, или полно его длине в случае вывода концов шва за пределы стыка.

При расчете сварных стыковых соединени элементов конструкци, рассчитанных согласно п. 5.2, в формуле (119) вместо Rwy следует принимать Rwu / γu.

Расчет сварных стыковых соединени выполнять не требуется при применении сварочных материалов согласно прил. 2, полном проваре соединяемых элементов и физическом контроле качества растянутых швов.

11.2*. Сварные соединения с угловыми швами при дествии продольно и поперечно сил следует рассчитывать на срез (условны) по двум сечениям (рис. 20):

Рис. 20. Схема расчетных сечени сварного соединения с угловым швом

1 - сечение по металлу шва; 2 - сечение по металлу границы сплавления

по металлу шва (сечение 1)

N / (βfkflw) ≤ Rwfγwfγc;                                            (120)

по металлу границы сплавления (сечение 2)

N / (βzkflw) Rwzywzγc,                                           (121)

где lw -      расчетная длина шва, принимаемая меньше его полно длины на 10 мм;

βf и βz -     коэффициенты, принимаемые при сварке элементов из стали: с пределом текучести до 530 МПа (5400 кгс/см2) - по табл. 34*; с пределом текучести свыше 530 МПа (5400 кгс/см2) независимо от вида сварки, положения шва и диаметра сварочно проволоки βf = 0,7 и βz = 1;

γwf и γwz -  коэффициенты услови работы шва, равные 1 во всех случаях, кроме конструкци, возводимых в климатических раонах I1, I2, II2 и II3, для которых γwf = 0,85 для металла шва с нормативным сопротивлением Rwun = 410 МПа (4200 кгс/см2) и γwz = 0,85 - для всех стале.

Для угловых швов, размеры которых установлены в соответствии с расчетом, в элементах из стали с пределом текучести до 285 МПа (2900 кгс/см2) следует применять электроды или сварочную проволоку согласно п. 3.4 настоящих норм, для которых расчетные сопротивления срезу по металлу шва Rwf должны быть более Rwz, а при ручно сварке - не менее чем в 1,1 раза превышать расчетные сопротивления срезу по металлу границы сплавления Rwz, но не превышать значени Rwzβz / βf; в элементах из стали с пределом текучести свыше 285 МПа (2900 кгс/см2) допускается применять электроды или сварочную проволоку, для которых выполняется условие

Rwz < Rwf Rwzβz / βf.

При выборе электродов или сварочно проволоки следует учитывать группы конструкци и климатические раоны, указанные в табл. 55*.

11.3*. Расчет сварных соединени с угловыми швами на дествие момента в плоскости, перпендикулярно плоскости расположения швов, следует производить по двум сечениям по формулам:

по металлу шва

;                                                   (122)

по металлу границы сплавления

;                                                    (123)

где Wf - момент сопротивления расчетного сечения по металлу шва;

Wz - то же, по металлу границы сплавления.

Расчет сварных соединени с угловыми швами на дествие момента в плоскости расположения этих швов следует производить по двум сечениям по формулам:

по металлу шва

;                                     (124)

по металлу границы сплавления

,                                     (125)

где Jfx и Jfy - моменты инерции расчетного сечения по металлу шва относительно его главных осе;

Jzx и Jzy - то же, по металлу границы сплавления;

х и y - координаты точки шва, наиболее удаленно от центра тяжести расчетного сечения швов, относительно главных осе этого сечения.

Таблица 34*

Вид сварки при диаметре сварочно проволоки d, мм

Положение шва

Коэффициент

Значения коэффициентов βf и βz при катетах швов, мм

3-8

9-12

14-16

18 и более

Автоматическая при d = 3 - 5

В лодочку

βf

1,1

0,7

βz

1,15

1,0

Нижнее

βf

1,1

0,9

0,7

βz

1,15

1,05

1,0

Автоматическая и полуавтоматическая при d = 1,4 - 2

В лодочку

βf

0,9

0,8

0,7

βz

1,05

1,0

Нижнее, горизонтальное, вертикальное

βf

0,9

0,8

0,7

βz

1,05

1,0

Ручная; полуавтоматическая проволоко сплошного сечения при d < 1,4 или порошково проволоко

В лодочку, нижнее, горизонтальное, вертикальное, потолочное

βf

0,7

βz

1,0

Примечание. Значения коэффициентов соответствуют нормальным режимам сварки.

11.4. Сварные стыковые соединения, выполненные без физического контроля качества, при одновременном дествии в одном и том же сечении нормальных и касательных напряжени следует проверять по формуле (33), в которо значения σх, σу, τху и Ry следует принимать соответственно: σх = σwx и σу = σwy - нормальные напряжения в сварном соединении по двум взаимно перпендикулярным направлениям; τху = τwxy - касательное напряжение в сварном соединении; Ry = Rwy.

11.5. При расчете сварных соединени с угловыми швами на одновременное дествие продольно и поперечно сил и момента должны быть выполнены условия

τfRwfγwfγc и τz Rwzγwzγc,                                            (126)

где τf и τz - напряжения в расчетом сечении соответственно по металлу шва и по металлу границы сплавления, равные геометрическим суммам напряжени, вызываемых продольно и поперечно силами и моментом.

БОЛТОВЫЕ СОЕДИНЕНИЯ

11.6. В болтовых соединениях при дествии продольно силы N, проходяще через центр тяжести соединения, распределение это силы между болтами следует принимать равномерным.

11.7*. Расчетное усилие Nb, которое может быть воспринято одним болтом, следует определять по формулам:

на срез

Nb = RbsγbAns;                                                         (127)

на смятие

Nb = RbpγbdΣt;                                                         (128)

на растяжение

Nb = RbtAbn.                                                             (129)

Обозначения, принятые в формулах (127)-(129):

Rbs, Rbp, Rbt -  расчетные сопротивления болтовых соединени;

d - наружны диаметр стержня болта;

А = πd2 / 4 - расчетная площадь сечения стержня болта;

Аbn -  площадь сечения болта нетто; для болтов с метрическо резьбо значение Аbп следует принимать по прил. 1 к ГОСТ 22356-77*;

Σt -   наименьшая суммарная толщина элементов, сминаемых в одном направлении;

ns - число расчетных срезов одного болта;

γb - коэффициент услови работы соединения, которы следует принимать по табл. 35*.

Таблица 35*

Характеристика соединения

Коэффициент услови работы соединения γb

1. Многоболтовое в расчетах на срез и смятие при болтах:

 

класса точности А

1,0

классов точности В и С, высокопрочных с нерегулируемым натяжением

0,9

2. Одноболтовое и многоболтовое в расчете на смятие при а = 1,5d и b = 2d в элементах конструкци из стали с пределом текучести, МПа (кгс/см2):

 

до 285 (2900)

0,8

св. 285 (2900) до 380 (3900)

0,75

Обозначения, принятые в табл. 35*:

а - расстояние вдоль усилия от края элемента до центра ближашего отверстия;

b - то же, между центрами отверсти;

d - диаметр отверстия для болта.

Примечания: 1. Коэффициенты, установленные в поз. 1 и 2, следует учитывать одновременно.

2. При значениях расстояни а и b, промежуточных между указанными в поз. 2 и в табл. 39, коэффициент γb следует определять линено интерполяцие.

Для одноболтовых соединени следует учитывать коэффициенты услови работы γc согласно требованиям п. 11.8.

11.8. Количество n болтов в соединении при дествии продольно силы N следует определять по формуле

,                                                         (130)

где Nmin - меньшее из значени расчетного усилия для одного болта, вычисленных согласно требованиям п. 11.7* настоящих норм.

11.9. При дествии на соединение момента, вызывающего сдвиг соединяемых элементов, распределение усили на болты следует принимать пропорционально расстояниям от центра тяжести соединения до рассматриваемого болта.

11.10. Болты, работающие одновременно на срез и растяжение, следует проверять отдельно на срез и растяжение.

Болты, работающие на срез от одновременного дествия продольно силы и момента, следует проверять на равнодествующее усилие.

11.11. В креплениях одного элемента к другому через прокладки или иные промежуточные элементы, а также в креплениях с односторонне накладко количество болтов должно быть увеличено против расчета на 10 %.

При креплениях выступающих полок уголков или швеллеров с помощью коротыше количество болтов, прикрепляющих одну из полок коротыша, должно быть увеличено против расчета на 50 %.

СОЕДИНЕНИЯ НА ВЫСОКОПРОЧНЫХ БОЛТАХ

11.12. Соединения на высокопрочных болтах следует рассчитывать в предположении передачи дествующих в стыках и прикреплениях усили через трение, возникающее по соприкасающимся плоскостям соединяемых элементов от натяжения высокопрочных болтов. При этом распределение продольно силы между болтами следует принимать равномерным.

11.13*. Расчетное усилие Qbh, которое может быть воспринято каждо поверхностью трения соединяемых элементов, стянутых одним высокопрочным болтом, следует определять по формуле

,                                                 (131)*

где Rbf - расчетное сопротивление растяжению высокопрочного болта;

μ - коэффициент трения, принимаемы по табл. 36*;

γh - коэффициент надежности, принимаемы по табл. 36*;

Аbn -  площадь сечения болта нетто, определяемая по табл. 62*;

γb -   коэффициент услови работы соединения, зависящи от количества n болтов, необходимых для восприятия расчетного усилия, и принимаемы равным:

0,8 при п < 5;

0,9 при 5 n < 10;

1,0 при п10.

Количество п высокопрочных болтов в соединении при дествии продольно силы следует определять по формуле

,                                                            (132)*

где k - количество поверхносте трения соединяемых элементов.

Натяжение высокопрочного болта следует производить осевым усилием Р = RbhAbn.

11.14. Расчет на прочность соединяемых элементов, ослабленных отверстиями под высокопрочные болты, следует выполнять с учетом того, что половина усилия, приходящегося на кажды болт, в рассматриваемом сечении уже передана силами трения. При этом проверку ослабленных сечени следует производить: при динамических нагрузках - по площади сечения нетто Ап, при статических нагрузках - по площади сечения брутто А при Ап0,85А либо по условно площади Ас = 1,18An при Аn < 0,85А.

Таблица 36*

Способ обработки (очистки) соединяемых поверхносте

Способ регулирования натяжения болтов

Коэффициент трения μ

Коэффициенты γh при нагрузке и при разности номинальных диаметров отверсти и болтов δ, мм

динамическо и при δ = 3-6; статическо и при δ = 5-6

динамическо и при δ = 1; статическо и при δ = 1-4

1. Дробеметны или дробеструны двух поверхносте без консервации

По М

0,58

1,35

1,12

«   α

0,58

1,20

1,02

2. То же, с консервацие еталлизацие распылением цинка или алюминия)

«   М

0,50

1,35

1,12

«   α

0,50

1,20

1,02

3. Дробью одно поверхности с консервацие полимерным клеем и посыпко карборундовым порошком, стальными щетками без консервации - друго поверхности

«   М

0,50

1,35

1,12

«   α

0,50

1,20

1,02

 

 

 

 

 

 

 

 

 

 

 

 

4. Газопламенны двух поверхносте без консервации

«   М

0,42

1,35

1,12

«   α

0,42

1,20

1,02

5. Стальными щетками двух поверхносте без консервации

«   М

0,35

1,35

1,17

«   α

0,35

1,25

1,06

6. Без обработки

«   М

0,25

1,70

1,30

«   α

0,25

1,50

1,20

Примечания. 1. Способ регулирования натяжения болтов по М означает регулирование по моменту закручивания, а по α - по углу поворота гаки.

2. Допускаются другие способы обработки соединяемых поверхносте, обеспечивающие значения коэффициентов трения μ не ниже указанных в таблице.

СОЕДИНЕНИЯ С ФРЕЗЕРОВАННЫМИ ТОРЦАМИ

11.15. В соединениях элементов с фрезерованными торцами (в стыках и базах колонн и т.п.) сжимающую силу следует считать полностью передающеся через торцы.

Во внецентренно-сжатых и сжато-изгибаемых элементах сварные швы и болты, включая высокопрочные, указанных соединени следует рассчитывать на максимальное растягивающее усилие от дествия момента и продольно силы при наиболее неблагоприятном их сочетании, а также на сдвигающее усилие от дествия поперечно силы.

ПОЯСНЫЕ СОЕДИНЕНИЯ В СОСТАВНЫХ БАЛКАХ

11.16. Сварные швы и высокопрочные болты, соединяющие стенки и пояса составных двутавровых балок, следует рассчитывать согласно табл. 37*.

При отсутствии ребер жесткости для передачи больших неподвижных сосредоточенных нагрузок расчет прикрепления верхнего пояса следует выполнять как для подвижно сосредоточенно нагрузки.

При приложении неподвижно сосредоточенно нагрузки к нижнему поясу балки сварные швы и высокопрочные болты, прикрепляющие этот пояс к стенке, следует рассчитывать по формулам (138)-(140)*табл. 37* независимо от наличия ребер жесткости в местах приложения грузов.

Таблица 37*

Характер нагрузки

Вид соединения

Формулы для расчета поясных соединени в составных балках

Неподвижная

Угловые швы:

двусторонние

T / (2βfkf) ≤ Rwfγwfγc;                        (133)

T / (2βzkf) ≤ Rwzγwzγc                        (134)

односторонние

T / (βfkf) ≤ Rwfγwfγc;                         (135)

T / (βzkf) ≤ Rwzγwzγc                          (136)

Высокопрочные болты

aT Qbhc;                            (137)*

Подвижная

Угловые швы двусторонние

 / (2βfkf) ≤ Rwfγwfγc;                  (138)

 / (2βzkf) ≤ Rwzγwzγc                  (139)

Высокопрочные болты

a Qbhc;                   (140)*

Обозначения, принятые в табл. 37*:

 -       сдвигающее пояс усилие на единицу длины, вызываемое поперечно сило Q, где S - статически момент брутто пояса балки относительно нетрально оси;

 -    давление от сосредоточенного груза F (для подкрановых балок от давления колеса крана, принимаемого без коэффициента динамичности), где γf - коэффициент, принимаемы согласно требованиям СНиП по нагрузкам и воздествиям, lef - условная длина распределения сосредоточенного груза, принимаемая по пп. 5.13 и 13.34* настоящих норм;

α -    коэффициент, принимаемы при нагрузке по верхнему поясу балки, в которо стенка пристрогана к верхнему поясу, α = 0,4, а при отсутствии пристрожки стенки или при нагрузке по нижнему поясу α = 1;

a -    шаг поясных высокопрочных болтов;

Qbh -  расчетное усилие одного высокопрочного болта, определяемое по формуле (131)*;

k -    количество поверхносте трения соединяемых элементов.

Сварные поясные швы, выполненные с проваром на всю толщину стенки, следует считать равнопрочными со стенко.

11.17. В балках с соединениями на высокопрочных болтах с многолистовыми поясными пакетами прикрепление каждого из листов за местом своего теоретического обрыва следует рассчитывать на половину усилия, которое может быть воспринято сечением листа. Прикрепление каждого листа на участке между дествительным местом его обрыва и местом обрыва предыдущего листа следует рассчитывать на полное усилие, которое может быть воспринято сечением листа.

12. ОБЩИЕ ТРЕБОВАНИЯ ПО ПРОЕКТИРОВАНИЮ СТАЛЬНЫХ КОНСТРУКЦИЙ

ОСНОВНЫЕ ПОЛОЖЕНИЯ

12.1*. При проектировании стальных конструкци необходимо:

предусматривать связи, обеспечивающие в процессе монтажа и эксплуатации усточивость и пространственную неизменяемость сооружения в целом и его элементов, назначая их в зависимости от основных параметров сооружения и режима его эксплуатации (конструктивно схемы, пролетов, типов кранов и режимов их работы, температурных воздестви и т.п.);

учитывать производственные возможности и мощность технологического и кранового оборудования предприяти - изготовителе стальных конструкци, а также подъемно-транспортное и другое оборудование монтажных организаци;

производить разбивку конструкци на отправочные элементы с учетом вида транспорта и габаритов транспортных средств, рационального и экономичного транспортирования конструкци на строительство и выполнения максимального объема работ на предприятии-изготовителе;

использовать возможность фрезерования торцов для мощных сжатых и внецентренножатых элементов (при отсутствии значительных краевых растягивающих напряжени) при наличии соответствующего оборудования на предприятии-изготовителе;

предусматривать монтажные крепления элементов (устроство монтажных столиков и т.п.);

в болтовых монтажных соединениях применять болты класса точности В и С, а также высокопрочные, при этом в соединениях, воспринимающих значительные вертикальные усилия (креплениях ферм, ригеле, рам и т.п.), следует предусматривать столики; при наличии в соединениях изгибающих моментов следует применять болты класса точности В и С, работающие на растяжение.

12.2. При конструировании стальных сварных конструкци следует исключать возможность вредного влияния остаточных деформаци и напряжени, в том числе сварочных, а также концентрации напряжени, предусматривая соответствующие конструктивные решения (с наиболее равномерным распределением напряжени в элементах и деталях, без входящих углов, резких перепадов сечения и других концентраторов напряжени) и технологические мероприятия (порядок сборки и сварки, предварительны выгиб, механическую обработку соответствующих зон путем строгания, фрезерования, зачистки абразивным кругом и др.).

12.3. В сварных соединениях стальных конструкци следует исключать возможность хрупкого разрушения конструкци в процессе их монтажа и эксплуатации в результате неблагоприятного сочетания следующих факторов:

высоких местных напряжени, вызванных воздествием сосредоточенных нагрузок или деформаци детале соединени, а также остаточных напряжени;

резких концентраторов напряжени на участках с высокими местными напряжениями и ориентированных поперек направления дествующих растягивающих напряжени;

пониженно температуры, при которо данная марка стали в зависимости от ее химического состава, структуры и толщины проката переходит в хрупкое состояние.

При конструировании сварных конструкци следует учитывать, что конструкции со сплошно стенко имеют меньше концентраторов напряжени и менее чувствительны к эксцентриситетам по сравнению с решетчатыми конструкциями.

12.4*. Стальные конструкции следует защищать от коррозии в соответствии со СНиП по защите строительных конструкци от коррозии.

Защита конструкци, предназначенных для эксплуатации в условиях тропического климата, должна выполняться по ГОСТ 15150-69*.

12.5. Конструкции, которые могут подвергаться воздествию расплавленного металла (в виде брызг при разливке металла, при прорыве металла из пече или ковше), следует защищать облицовко или ограждающими стенками из огнеупорного кирпича или жароупорного бетона, защищенными от механических повреждени.

Конструкции, подвергающиеся длительному воздествию лучисто или конвекционно теплоты или кратковременному воздествию огня во время авари тепловых агрегатов, следует защищать подвесными металлическими экранами или футеровко из кирпича или жароупорного бетона.

СВАРНЫЕ СОЕДИНЕНИЯ

12.6. В конструкциях со сварными соединениями следует:

предусматривать применение высокопроизводительных механизированных способов сварки;

обеспечивать свободны доступ к местам выполнения сварных соединени с учетом выбранного способа и технологии сварки.

12.7. Разделку кромок под сварку следует принимать по ГОСТ 8713-79*, ГОСТ 11533-75, ГОСТ 14771-76*, ГОСТ 23518-79, ГОСТ 5264-80 и ГОСТ 11534-75.

12.8. Размеры и форму сварных угловых швов следует принимать с учетом следующих услови:

а) катеты угловых швов kf должны быть не более 1,2t, где t - наименьшая толщина соединяемых элементов;

б) катеты угловых швов kf следует принимать по расчету, но не менее указанных в табл. 38*;

в) расчетная длина углового сварного шва должна быть не менее 4kf и не менее 40 мм;

г) расчетная длина флангового шва должна быть не более 85βfkf (βf - коэффициент, принимаемы по табл. 34*), за исключением швов, в которых усилие дествует на всем протяжении шва;

д) размер нахлестки должен быть не менее 5 толщин наиболее тонкого из свариваемых элементов;

е) соотношения размеров катетов угловых швов следует принимать, как правило, 1:1. При разных толщинах свариваемых элементов допускается принимать швы с неравными катетами, при этом катет, примыкающи к более тонкому элементу, должен соответствовать требованиям п. 12.8, а, а примыкающи к более толстому элементу - требованиям п. 12.8, б;

ж) в конструкциях, воспринимающих динамические и вибрационные нагрузки, а также возводимых в климатических раонах I1, I2, II2 и II3, угловые швы следует выполнять с плавным переходом к основному металлу при обосновании расчетом на выносливость или на прочность с учетом хрупкого разрушения.

12.9*. Для прикрепления ребер жесткости, диафрагм и поясов сварных двутавров по пп. 7.2*, 7.3, 13.12*, 13.26 и конструкци группы 4 допускается применять односторонние угловые швы, катеты которых kf - следует принимать по расчету, но не менее указанных в табл. 38*.

Применение этих односторонних угловых швов не допускается в конструкциях:

группы I;

эксплуатируемых в среднеагрессивно и сильноагрессивно средах (классификация согласно СНиП по защите строительных конструкци от коррозии);

возводимых в климатических раонах I1, I2, II2 и II3.

12.10. Для расчетных и конструктивных угловых швов в проекте должны быть указаны вид сварки, электроды или сварочная проволока, положение шва при сварке.

12.11. Сварные стыковые соединения листовых детале следует, как правило, выполнять прямыми с полным проваром и с применением выводных планок.

В монтажных условиях допускается односторонняя сварка с подварко корня шва и сварка на остающеся стально подкладке.

12.12. Применение комбинированных соединени, в которых часть усилия воспринимается сварными швами, а часть - болтами, не допускается.

12.13. Применение прерывистых швов, а также электрозаклепок, выполняемых ручно сварко с предварительным сверлением отверсти, допускается только в конструкциях группы 4.

БОЛТОВЫЕ СОЕДИНЕНИЯ И СОЕДИНЕНИЯ НА ВЫСОКОПРОЧНЫХ БОЛТАХ

12.14. Отверстия в деталях стальных конструкци следует выполнять согласно требованиям СНиП по правилам производства и приемки работ для металлических конструкци.

Таблица 38*

Вид соединения

Вид сварки

Предел текучести стали, МПа (кгс/см3)

Минимальные катеты швов kf, мм, при толщине более толстого из свариваемых элементов t, мм

4-5

6-10

11-16

17-22

23-32

33-40

41-80

Тавровое с двусторонними угловыми швами; нахлесточное и угловое

Ручная

До 430 (4400)

4

5

6

7

8

9

10

Св. 430 (4400)

до 530 (5400)

5

6

7

8

9

10

12

Автоматическая и полуавтоматическая

До 430 (4400)

3

4

5

6

7

8

9

Св. 430 (4400)

до 530 (5400)

4

5

6

7

8

9

10

Тавровое с односторонними угловыми швами

Ручная

До 380 (3900)

5

6

7

8

9

10

12

Автоматическая и полуавтоматическая

4

5

6

7

8

9

10

Примечания: 1. В конструкциях из стали с пределом текучести свыше 530 МПа (5400 кгс/см*), а также из всех стале при толщине элементов свыше 80 мм минимальные катеты угловых швов принимаются по специальным техническим условиям.

2. В конструкциях группы 4 минимальные катеты односторонних угловых швов следует уменьшать на 1 мм при толщине свариваемых элементов до 40 мм включ. и на 2 мм - при толщине элементов свыше 40 мм.

12.15*. Болты класса точности А следует применять для соединени, в которых отверстия просверлены на проектны диаметр в собранных элементах либо по кондукторам в отдельных элементах и деталях, просверлены или продавлены на меньши диаметр в отдельных деталях с последующим рассверливанием до проектного диаметра в собранных элементах.

Болты класса точности В и С в многоболтовых соединениях следует применять для конструкци, изготовляемых из стали с пределом текучести до 380 МПа (3900 кгс/см2).

12.16. Элементы в узле допускается крепить одним болтом.

12.17. Болты, имеющие по длине ненарезанно части участки с различными диаметрами, не допускается применять в соединениях, в которых эти болты работают на срез.

12.18*. Под гаки болтов следует устанавливать круглые шабы по ГОСТ 11371-78*, под гаки и головки высокопрочных болтов следует устанавливать шабы по ГОСТ 22355-77*. Для высокопрочных болтов по ГОСТ 22353-77* с увеличенными размерами головок и гаек и при разности номинальных диаметров отверстия и болта, не превышающе 3 мм, а в конструкциях, изготовленных из стали с временным сопротивлением не ниже 440 МПа (4500 кгс/см2), не превышающе 4 мм, допускается установка одно шабы под гаку.

Резьба болта, воспринимающего сдвигающее усилие, не должна находиться на глубине более половины толщины элемента, прилегающего к гаке, или свыше 5 мм, кроме структурных конструкци, опор лини электропередачи и открытых распределительных устроств и лини контактных сете транспорта, где резьба должна находиться вне пакета соединяемых элементов.

12.19*. Болты (в том числе высокопрочные) следует размещать в соответствии с табл. 39.

Таблица 39

Характеристика расстояния

Расстояния при размещении болтов

1. Расстояния между центрами болтов в любом направлении:

 

а) минимальное

2,5d*

б) максимальное в краних рядах при отсутствии окамляющих уголков при растяжении и сжатии

8d или 12t

в) максимальное в средних рядах, а также в краних рядах при наличии окамляющих уголков:

 

при растяжении

16d или 24t

   «  сжатии

12d или 18t

2. Расстояния от центра болта до края элемента:

 

а) минимальное вдоль усилия

2d

б) то же, поперек усилия:

 

при обрезных кромках

1,5d

   «  прокатных

1,2d

в) максимальное

4d или 8t

г) минимальное для высокопрочных болтов при любо кромке и любом направлении усилия

1,3d

* В соединяемых элементах из стали с пределом текучести свыше 380 МПа (3900 кгс/см2) минимальное расстояние между болтами следует принимать равным 3d.

Обозначения, принятые в табл. 39:

d - диаметр отверстия для болта;

t - толщина наиболее тонкого наружного элемента.

Примечание. В соединяемых элементах из стали с пределом текучести до 380 МПа (3900 кгс/см2) допускается уменьшение расстояния от центра болта до края элемента вдоль усилия и минимального расстояния между центрами болтов в случаях расчета с учетом соответствующих коэффициентов услови работы соединени согласно пп. 11.7* и 15.14*.

Соединительные болты должны размещаться, как правило, на максимальных расстояниях; в стыках и узлах следует размещать болты на минимальных расстояниях.

При размещении болтов в шахматном порядке расстояние между их центрами вдоль усилия следует принимать не менее a + 1,5d, где a - расстояние между рядами поперек усилия, d - диаметр отверстия для болта. При таком размещении сечение элемента Аn определяется с учетом ослабления его отверстиями, расположенными только в одном сечении поперек усилия (не по «зигзагу»).

При прикреплении уголка одно полко отверстие, наиболее удаленное от его конца, следует размещать на риске, ближаше к обушку.

12.20*. В соединениях с болтами классов точности А, В и С (за исключением крепления второстепенных конструкци и соединени на высокопрочных болтах) должны быть предусмотрены меры против развинчивания гаек (постановка пружинных шаб или контргаек).

13. ДОПОЛНИТЕЛЬНЫЕ ТРЕБОВАНИЯ ПО ПРОЕКТИРОВАНИЮ ПРОИЗВОДСТВЕННЫХ ЗДАНИЙ И СООРУЖЕНИЙ1

1 Допускается применять для других видов здани и сооружени.

ОТНОСИТЕЛЬНЫЕ ПРОГИБЫ И ОТКЛОНЕНИЯ КОНСТРУКЦИЙ

13.1*. Прогибы и перемещения элементов конструкци не должны превышать предельных значени, установленных СНиП по нагрузкам и воздествиям.

Табл. 40* исключена.

13.2-13.4 и табл. 41* исключены.

РАССТОЯНИЯ МЕЖДУ ТЕМПЕРАТУРНЫМИ ШВАМИ

13.5. Наибольшие расстояния между температурными швами стальных каркасов одноэтажных здани и сооружени следует принимать согласно табл. 42.

При превышении более чем на 5 % указанных в табл. 42 расстояни, а также при увеличении жесткости каркаса стенами или другими конструкциями в расчете следует учитывать климатические температурные воздествия, неупругие деформации конструкци и податливость узлов.

ФЕРМЫ И СТРУКТУРНЫЕ ПЛИТЫ ПОКРЫТИЙ

13.6. Оси стержне ферм и структур должны быть, как правило, центрированы во всех узлах. Центрирование стержне следует производить в сварных фермах по центрам тяжести сечени (с округлением до 5 мм), а в болтовых - по рискам уголков, ближашим к обушку.

Смещение осе поясов ферм при изменении сечени допускается не учитывать, если оно не превышает 1,5 % высоты пояса.

Таблица 42

Характеристика здани и сооружени

Наибольшие расстояния, м

между температурными швами

от температурного шва или торца здания до оси ближаше вертикально связи

по длине блока (вдоль здания)

по ширине блока

в климатических раонах строительства

всех, кроме I1, I2, II2 и II3

I1, I2, II2 и II3

всех, кроме I1, I2, II2 и II3

I1, I2, II2 и II3

всех, кроме I1, I2, II2 и II3

I1, I2, II2 и II3

Отапливаемые здания

230

160

150

110

90

60

Неотапливаемые здания и горячие цехи

200

140

120

90

75

50

Открытые эстакады

130

100

-

-

50

40

Примечание. При наличии между температурными швами здания или сооружения двух вертикальных связе расстояние между последними в осях не должно превышаться здани - 40-50 м и для открытых эстакад - 25-30 м, при этом для здани и сооружени, возводимых в климатических раонах I1, I2, II2 и II3, должны приниматься меньшие из указанных расстояни.

При наличии эксцентриситетов в узлах элементы ферм и структур следует рассчитывать с учетом соответствующих изгибающих моментов.

При приложении нагрузок вне узлов фермы пояса должны быть рассчитаны на совместное дествие продольных усили и изгибающих моментов.

13.7. При пролетах ферм покрыти свыше 36 м следует предусматривать строительны подъем, равны прогибу от постоянно и длительно нагрузок. При плоских кровлях строительны подъем следует предусматривать независимо от величины пролета, принимая его равным прогибу от суммарно нормативно нагрузки плюс 1/200 пролета.

13.8. При расчете ферм с элементами из уголков или тавров соединения элементов в узлах ферм допускается принимать шарнирными. При двутавровых, Нбразных и трубчатых сечениях элементов расчет ферм по шарнирно схеме допускается, когда отношение высоты сечения к длине элементов не превышает: 1/10 - для конструкци, эксплуатируемых во всех климатических раонах, кроме I1, I2, II2 и II3; 1/15 - в раонах I1, I2, II2 и II3.

При превышении этих отношени следует учитывать дополнительные изгибающие моменты в элементах от жесткости узлов. Учет жесткости узлов в фермах разрешается производить приближенными методами; осевые усилия допускается определять по шарнирно схеме.

13.9*. Расстояние между краями элементов решетки и пояса в узлах сварных ферм с фасонками следует принимать не менее а = 6t - 20 мм, но не более 80 мм (здесь t - толщина фасонки, мм).

Между торцами стыкуемых элементов поясов ферм, перекрываемых накладками, следует оставлять зазор не менее 50 мм.

Сварные швы, прикрепляющие элементы решетки фермы к фасонкам, следует выводить на торец элемента на длину 20 мм.

13.10. В узлах ферм с поясами из тавров, двутавров и одиночных уголков крепление фасонок к полкам поясов встык следует осуществлять с проваром на всю толщину фасонки. В конструкциях группы 1, а также эксплуатируемых в климатических раонах I1, I2, II2 и II3 примыкание узловых фасонок к поясам следует выполнять согласно поз. 7 табл. 83*.

КОЛОННЫ

13.11. Отправочные элементы сквозных колонн с решетками в двух плоскостях следует укреплять диафрагмами, располагаемыми у концов отправочного элемента.

В сквозных колоннах с соединительно решетко в одно плоскости диафрагмы следует располагать не реже чем через 4 м.

13.12*. В центрально-сжатых колоннах и стоках с односторонними поясными швами согласно п. 12.9* в узлах крепления связе, балок, распорок и других элементов в зоне передачи усилия следует применять двусторонние поясные швы, выходящие за контуры прикрепляемого элемента (узла) на длину 30kf с каждо стороны.

13.13. Угловые швы, прикрепляющие фасонки соединительно решетки к колоннам внахлестку, следует назначать по расчету и располагать с двух сторон фасонки вдоль колонны в виде отдельных участков в шахматном порядке, при этом расстояние между концами таких швов не должно превышать 15 толщин фасонки.

В конструкциях, возводимых в климатических раонах I1, I2, II2 и II3, а также при применении ручно дугово сварки швы должны быть непрерывными по все длине фасонки.

13.14. Монтажные стыки колонн следует выполнять с фрезерованными торцами, сварными встык, на накладках со сварными швами или болтами, в том числе высокопрочными. При приварке накладок швы следует не доводить до стыка на 30 мм с каждо стороны. Допускается применение фланцевых соединени с передаче сжимающих усили через плотное касание, а растягивающих - болтами.

СВЯЗИ

13.15. В каждом температурном блоке здания следует предусматривать самостоятельную систему связе.

13.16. Нижние пояса подкрановых балок и ферм пролетом свыше 12 м следует укреплять горизонтальными связями.

13.17. Вертикальные связи между основными колоннами ниже уровня подкрановых балок при двухветвевых колоннах следует располагать в плоскости каждо из ветве колонны.

Ветви двухветвевых связе, как правило, следует соединять между собо соединительными решетками.

13.18. Поперечные горизонтальные связи следует предусматривать в уровне верхнего или нижнего поясов стропильных ферм в каждом пролете здания по торцам температурных блоков. При длине температурного блока более 144 м следует предусматривать промежуточные поперечные горизонтальные связи.

Стропильные фермы, не примыкающие непосредственно к поперечным связям, следует раскреплять в плоскости расположения этих связе распорками и растяжками.

В местах расположения поперечных связе следует предусматривать вертикальные связи между фермами.

При наличии жесткого диска кровли в уровне верхних поясов следует предусматривать инвентарные съемные связи для выверки конструкци и обеспечения их усточивости в процессе монтажа,

В покрытиях здани и сооружени, эксплуатируемых в климатических раонах I1, I2, II2 и II3, следует, как правило, предусматривать (дополнительно к обычно применяемым) вертикальные связи посредине каждого пролета вдоль всего здания.

13.19*. Продольные горизонтальные связи в плоскости нижних поясов стропильных ферм следует предусматривать вдоль краних рядов колонн в зданиях с кранами групп режимов работы 6К-8К по ГОСТ 25546-82; в покрытиях с подстропильными фермами; в одно- и двухпролетных зданиях с мостовыми кранами грузоподъемностью 10 т и более, а при отметке низа стропильных конструкци свыше 18 м - независимо от грузоподъемности кранов.

В зданиях с числом пролетов более трех горизонтальные продольные связи следует размещать также вдоль средних рядов колонн не реже чем через пролет в зданиях с кранами групп режимов работы 6К-8К по ГОСТ 25546-82 и через два пролета - в прочих зданиях.

13.20. Горизонтальные связи по верхним и нижним поясам разрезных ферм пролетных строени транспортерных галере следует конструировать раздельно для каждого пролета.

13.21. При применении крестово решетки связе покрыти допускается расчет по условно схеме в предположении, что раскосы воспринимают только растягивающие усилия.

При определении усили в элементах связе обжатие поясов ферм, как правило, учитывать не следует.

13.22. При устростве мембранного настила в плоскости нижних поясов ферм допускается учитывать работу мембраны.

13.23. В висячих покрытиях с плоскостными несущими системами (двухпоясными, изгибно-жесткими вантами и т.п.) следует предусматривать вертикальные и горизонтальные связи между несущими системами.

БАЛКИ

13.24. Применять пакеты листов для поясов сварных двутавровых балок, как правило, не разрешается.

Для поясов балок на высокопрочных болтах допускается применять пакеты, состоящие не более чем из трех листов, при этом площадь поясных уголков следует принимать равно не менее 30 % все площади пояса.

13.25. Поясные швы сварных балок, а также швы, присоединяющие к основному сечению балки вспомогательные элементы (например, ребра жесткости), должны выполняться непрерывными.

13.26. При применении односторонних поясных швов в сварных двутавровых балках, несущих статическую нагрузку, должны быть выполнены следующие требования:

расчетная нагрузка должна быть приложена симметрично относительно поперечного сечения балки;

должна быть обеспечена усточивость сжатого пояса балки в соответствии с п. 5.16*, а;

в местах приложения к поясу балки сосредоточенных нагрузок, включая нагрузки от ребристых железобетонных плит, должны быть установлены поперечные ребра жесткости.

В ригелях рамных конструкци у опорных узлов следует применять двусторонние поясные швы.

В балках, рассчитываемых согласно требованиям пп. 5.18*-5.23 настоящих норм, применение односторонних поясных швов не допускается.

13.27. Ребра жесткости сварных балок должны быть удалены от стыков стенки на расстояние не менее 10 толщин стенки. В местах пересечения стыковых швов стенки балки с продольным ребром жесткости швы, прикрепляющие ребро к стенке, следует не доводить до стыкового шва на 40 мм.

13.28. В сварных двутавровых балках конструкци групп 2-4 следует, как правило, применять односторонние ребра жесткости с расположением их с одно стороны балки.

В балках с односторонними поясными швами ребра жесткости следует располагать со стороны стенки, противоположно расположению односторонних поясных швов.

ПОДКРАНОВЫЕ БАЛКИ

13.29. Расчет на прочность подкрановых балок следует выполнять согласно требованиям п. 5.17 на дествие вертикальных и горизонтальных нагрузок.

13.30*. Расчет на прочность стенок подкрановых балок (за исключением балок, рассчитываемых на выносливость, для кранов групп режимов работы 7К в цехах металлургических производств и 8К по ГОСТ 25546-82) следует выполнять по формуле (33), в которо при расчете сечени на опорах неразрезных балок вместо коэффициента 1,15 следует принимать коэффициент 1,3.

13.31. Расчет на усточивость подкрановых балок следует выполнять в соответствии с п. 5.15.

13.32. Проверку усточивости стенок и поясных листов подкрановых балок следует выполнять согласно требованиям разд. 7 настоящих норм.

13.33*. Подкрановые балки следует рассчитывать на выносливость согласно разд. 9 настоящих норм, при этом следует принимать α = 0,77 при кранах групп режимов работы 7К (в цехах металлургических производств) и 8К по ГОСТ 25546-82 и α = 1,1 в остальных случаях.

В подкрановых балках для кранов групп режимов работы 7К (в цехах металлургических производств) и 8К по ГОСТ 25546-82 стенки дополнительно следует рассчитывать на прочность согласно п. 13.34* и на выносливость согласно п. 13.35*.

Расчет подкрановых балок на прочность и на выносливость следует производить на дествие крановых нагрузок, устанавливаемых согласно требованиям СНиП по нагрузкам и воздествиям.

13.34*. В сжато зоне стенок подкрановых балок из стали с пределом текучести до 400 МПа (4100 кгс/см2) должны быть выполнены условия:

;           (141)

σx + σloc,xRy;                                                            (142)

σloc,y + σfyRy;                                                           (143)

τxy + τloc,xy + τf,xyRs;                                                      (144)

где

;                               (145)*

β -      коэффициент, принимаемы равным 1,15 для расчета разрезных балок и 1,3 - для расчета сечени на опорах неразрезных балок.

В формулах (145)*:

М, Q -    соответственно изгибающи момент и поперечная сила в сечении балки от расчетно нагрузки;

γf1 -     коэффициент увеличения вертикально сосредоточенно нагрузки на отдельное колесо крана, принимаемы согласно требованиям СНиП по нагрузкам и воздествиям;

F -      расчетное давление колеса крана без учета коэффициента динамичности;

lef -     условная длина, определяемая по формуле

;                                                            (146)

где с -  коэффициент, принимаемы для сварных и прокатных балок 3,25, для балок на высокопрочных болтах - 4,5;

J1f -      сумма собственных моментов инерции пояса балки и кранового рельса или общи момент инерции рельса и пояса в случае приварки рельса швами, обеспечивающими совместную работу рельса и пояса;

Mt -     местны крутящи момент, определяемы по формуле

Mt = Fe + 0,75Qthr,                                                   (147)

где е -  условны эксцентриситет, принимаемы равным 15 мм;

Qt -      поперечная расчетная горизонтальная нагрузка, вызываемая перекосами мостового крана и непараллельностью крановых путе, принимаемая согласно требованиям СНиП по нагрузкам и воздествиям;

hr -       высота кранового рельса;

 -  сумма собственных моментов инерции кручения рельса и пояса, где tf и bf - соответственно толщина и ширина верхнего (сжатого) пояса балки.

Все напряжения в формулах (141)-(145)* следует принимать со знаком «плюс».

13.35*. Расчет на выносливость верхне зоны стенки составно подкраново балки следует выполнять по формуле

,                              (148)

где Rv -     расчетное сопротивление усталости для всех стале, принимаемое равным соответственно для балок сварных и на высокопрочных болтах: Rv = 75 МПа (765 кгс/см2) и 95 МПа (930 кгс/см2) для сжато верхне зоны стенки (сечения в пролете балки); Rv = 65 МПа (665 кгс/см2) и 89 МПа (875 кгс/см2) для растянуто верхне зоны стенки (опорные сечения неразрезных балок).

Значения напряжени в формуле (148) следует определять по п. 13.34* от крановых нагрузок, устанавливаемых согласно требованиям СНиП по нагрузкам и воздествиям.

Верхние поясные швы в подкрановых балках для кранов групп режимов работы 7К (в цехах металлургических производств) и 8К по ГОСТ 25546-82 должны быть выполнены с проваром на всю толщину стенки.

13.36. Свободные кромки растянутых поясов подкрановых балок и балок рабочих площадок, непосредственно воспринимающих нагрузку от подвижных составов, должны быть прокатными, строгаными или обрезанными машинно кислородно или плазменно-дугово резко.

13.37*. Размеры ребер жесткости подкрановых балок должны удовлетворять требованиям п. 7.10, при этом ширина выступающе части двустороннего ребра должна быть не менее 90 мм. Двусторонние поперечные ребра жесткости не должны привариваться к поясам балки. Торцы ребер жесткости должны быть плотно пригнаны к верхнему поясу балки; при этом в балках под краны групп режимов работы 7К (в цехах металлургических производств) и 8К по ГОСТ 25546-82 необходимо строгать торцы, примыкающие к верхнему поясу.

В балках под краны групп режимов работы -5К по ГОСТ 25546-82 допускается применять односторонние поперечные ребра жесткости с приварко их к стенке и к верхнему поясу и расположением согласно п. 13.28.

13.38. Расчет на прочность подвесных балок крановых путе (монорельсов) следует выполнять с учетом местных нормальных напряжени в месте приложения давления от колеса крана, направленных вдоль и поперек оси балки.

ЛИСТОВЫЕ КОНСТРУКЦИИ

13.39. Контур поперечных элементов жесткости оболочек следует проектировать замкнутым.

13.40. Передачу сосредоточенных нагрузок на листовые конструкции следует, как правило, предусматривать через элементы жесткости.

13.41. В местах сопряжени оболочек различно формы следует применять, как правило, плавные переходы в целях уменьшения местных напряжени.

13.42. Выполнение всех стыковых швов следует предусматривать либо двусторонне сварко, либо односторонне сварко с подварко корня или на подкладках.

В проекте следует указывать на необходимость обеспечения плотности соединени конструкци, в которых эта плотность требуется.

13.43. В листовых конструкциях следует, как правило, применять сварные соединения встык. Соединения листов толщино 5 мм и менее, а также монтажные соединения допускается предусматривать внахлестку.

13.44. При конструировании листовых конструкци необходимо предусматривать индустриальные методы их изготовления и монтажа путем применения:

листов и лент больших размеров;

способа рулонирования, изготовления заготовок в виде скорлуп и др.;

раскроя, обеспечивающего наименьшее количество отходов;

автоматическо сварки;

минимального количества сварных швов, выполняемых на монтаже.

13.45. При проектировании прямоугольных или квадратных в плане плоских мембран покрыти в углах опорных контуров следует применять, как правило, плавное сопряжение элементов контура. Для мембранных конструкци следует, как правило, применять стали с повышенно стокостью против коррозии.

МОНТАЖНЫЕ КРЕПЛЕНИЯ

13.46*. Монтажные крепления конструкци здани и сооружени с подкрановыми балками, рассчитываемыми на выносливость, а также конструкци под железнодорожные составы следует осуществлять на сварке или высокопрочных болтах.

Болты классов точности В и С в монтажных соединениях этих конструкци допускается применять:

для крепления прогонов, элементов фонарно конструкции, связе по верхним поясам ферм (при наличии связе по нижним поясам или жестко кровли), вертикальных связе по фермам и фонарям, а также элементов фахверка;

для крепления связе по нижним поясам ферм при наличии жестко кровли (железобетонных или армированных плит из ячеистых бетонов, стального профилированного настила и т.п.);

для крепления стропильных и подстропильных ферм к колоннам и стропильных ферм к подстропильным при условии передачи вертикального опорного давления через столик;

для крепления разрезных подкрановых балок между собо, а также для крепления их нижнего пояса к колоннам, к которым не крепятся вертикальные связи;

для крепления балок рабочих площадок, не подвергающихся воздествию динамических нагрузок;

для крепления второстепенных конструкци.

14. ДОПОЛНИТЕЛЬНЫЕ ТРЕБОВАНИЯ ПО ПРОЕКТИРОВАНИЮ ЖИЛЫХ И ОБЩЕСТВЕННЫХ ЗДАНИЙ И СООРУЖЕНИЙ

КАРКАСНЫЕ ЗДАНИЯ

14.1-14.3 и табл. 43 исключены.

14.4*. Для перераспределения изгибающих моментов в элементах рамных систем допускается применение в узлах соединения ригеле с колоннами стальных накладок, работающих в пластическо стадии.

Накладки следует выполнять из стале с пределом текучести до 345 МПа (3500 кгс/см2).

Усилия в накладках следует определять при минимальном пределе текучести σу,min = Ryn и максимальном пределе текучести σy,max = Ryn + 100 МПа (1000 кгс/см2).

Накладки, работающие в пластическо стадии, должны иметь строганые или фрезерованные продольные кромки.

ВИСЯЧИЕ ПОКРЫТИЯ

14.5. Для конструкци из ните следует, как правило, применять канаты, пряди и высокопрочную проволоку. Допускается применение проката.

14.6. Кровля висячего покрытия, как правило, должна быть расположена непосредственно на несущих нитях и повторять образуемую ими форму. Допускается кровлю поднять над нитями, оперев на специальную надстроечную конструкцию, или подвесить к нитям снизу. В этом случае форма кровли может отличаться от формы провисания ните.

14.7. Очертания опорных контуров следует назначать с учетом кривых давления от усили в прикрепленных к ним нитях при расчетных нагрузках.

14.8. Висячие покрытия следует рассчитывать на стабильность формы от временных нагрузок, в том числе от ветрового отсоса, которая должна обеспечивать герметичность принято конструкции кровли. При этом следует проверять изменение кривизны покрытия по двум направлениям - вдоль и поперек ните. Необходимая стабильность достигается с помощью конструктивных мероприяти: увеличением натяжения нити за счет веса покрытия или предварительного напряжения; созданием специально стабилизирующе конструкции; применением изгибно-жестких ните; превращением системы ните и кровельных плит в единую конструкцию.

14.9. Сечение нити должно быть рассчитано по наибольшему усилию, возникающему при расчетно нагрузке, с учетом изменения заданно геометрии покрытия. В сетчатых системах, кроме этого, сечение нити должно быть проверено на усилие от дествия временно нагрузки, расположенно только вдоль данно нити.

14.10. Вертикальные и горизонтальные перемещения ните и усилия в них следует определять с учетом нелинености работы конструкци покрытия.

14.11. Коэффициенты услови работы ните из канатов и их закреплени следует принимать в соответствии с разд. 16. Для стабилизирующих канатов, если они не являются затяжками для опорного контура, коэффициент услови работы γc = 1.

14.12. Опорные узлы ните из прокатных профиле следует выполнять, как правило, шарнирными.

15*. ДОПОЛНИТЕЛЬНЫЕ ТРЕБОВАНИЯ ПО ПРОЕКТИРОВАНИЮ ОПОР ВОЗДУШНЫХ ЛИНИЙ ЭЛЕКТРОПЕРЕДАЧИ, КОНСТРУКЦИЙ ОТКРЫТЫХ РАСПРЕДЕЛИТЕЛЬНЫХ УСТРОЙСТВ И ЛИНИЙ КОНТАКТНЫХ СЕТЕЙ ТРАНСПОРТА

15.1*. Для опор воздушных лини электропередачи (ВЛ) и конструкци открытых распределительных устроств (ОРУ) и лини контактных сете транспорта (КС) следует, как правило, применять стали в соответствии с табл. 50* (кроме стале С390, С390К, С440, С590, С590К) и табл. 51, а.

15.2*. Болты классов точности А, В и С для опор ВЛ и конструкци ОРУ высото до 100 м следует принимать как для конструкци, не рассчитываемых на выносливость, а для опор высото более 100 м - как для конструкци, рассчитываемых на выносливость.

15.3. Литые детали следует проектировать из углеродисто стали марок 35Л и 45Л групп отливок II и III по ГОСТ 977-75*.

15.4*. При расчетах опор ВЛ и конструкци ОРУ и КС следует принимать коэффициенты услови работы, установленные разд. 4* и 11, а также по табл. 44*, п. 15.14* и прил. 4* настоящих норм.

Расчет на прочность элементов опор, за исключением расчета сечени в местах крепления растянутых элементов из одиночных уголков, прикрепляемых одно полко болтами, по п. 5.2 не допускается.

15.5. При определении приведенно гибкости по табл. 7 наибольшую гибкость всего стержня λ следует вычислять по формулам:

для четырехгранного стержня с параллельными поясами, шарнирно опертого по концам

λ = 2l / b;                                                               (149)

для трехгранного равностороннего стержня с параллельными поясами, шарнирно опертого по концам

λ = 2,5l / b;                                                            (150)

для свободностояще стоки пирамидально формы (рис. 9)*

λ = 2μ1h / bi.                                                          (151)

Обозначения, принятые в формулах (149)-(151):

μ1 = 1,25 (bs / bi)2 - 2,75 (bs / bi) +3,5 - коэффициент для определения расчетно длины;

l -   геометрическая длина сквозного стержня;

b -  расстояние между осями поясов узко грани стержня с параллельными поясами;

h -  высота свободно стояще стоки;

bs и bi - расстояния между осями поясов пирамидально опоры соответственно в верхнем и нижнем основаниях наиболее узко грани.

Таблица 44

Элементы конструкци

Коэффициенты услови работы γс

1 . Сжатые пояса из одиночных уголков стоек свободно стоящих опор в первых двух панелях от башмака при узловых соединениях:

 

а) на сварке

0,95

б) «   болтах

0,9

2. Сжатые элементы плоских решетчатых траверс из одиночных равнополочных уголков, прикрепляемых одно полко (рис. 21):

 

а) пояса, прикрепляемые к стоке опоры непосредственно двумя болтами и более

0,9

б) пояса, прикрепляемые к стоке опоры одним болтом или через фасонку

0,75

в) раскосы и распорки

0,75

3. Оттяжки из стальных канатов и пучков высокопрочно проволоки:

 

а) для промежуточных опор в нормальных режимах работы

0,9

б) для анкерных, анкерно-угловых и угловых опор:

 

в нормальных режимах работы

0,8

в авариных режимах работы

0,9

Примечание. Указанные в таблице коэффициенты услови работы не распространяются на соединения элементов в узлах.

15.6. Расчет на усточивость внецентренножатых и сжато-изгибаемых стержне сквозного сечения, постоянного по длине, следует выполнять согласно требованиям разд. 5 настоящих норм.

Рис. 21. Схемы траверс

а - с треугольно решетко; б - то же, со стоками

Для равносторонних трехгранных стержне сквозного сечения, постоянного по длине, с решетками и планками относительны эксцентриситет т следует вычислять по формулам:

при изгибе в плоскости, перпендикулярно одно из гране

т = 3,48βM / (Nb);                                                     (152)

при изгибе в плоскости, параллельно одно из гране

т = 3βM / (Nb),                                                        (153)

где b -  расстояние между осями поясов в плоскости грани;

β -    коэффициент, равны 1,2 при болтовых соединениях и 1,0 - при сварных соединениях.

15.7. При расчете внецентренно-сжатых и сжато-изгибаемых стержне сквозного сечения согласно требованиям п. 5.27* настоящих норм значение эксцентриситета при болтовых соединениях элементов следует умножать на коэффициент 1,2.

15.8. При проверке усточивости отдельных поясов внецентренно-сжатых и сжато-изгибаемых стоек сквозного сечения опор с оттяжками продольную силу в каждом поясе следует определять с учетом усилия от изгибающего момента М, вычисляемого по деформированно схеме. Значение этого момента в середине длины шарнирно-оперто стоки должно определяться по формуле

,                                          (154)

где Mq - изгибающи момент в середине длины от поперечно нагрузки, определяемы как в обычных балках;

δ = 1 - 0,1Nl2 / (EJ); здесь J - момент инерции сечения стоки относительно оси, перпендикулярно плоскости дествия поперечно нагрузки;

l - длина стоки;

N - продольная сила в стоке;

fq - прогиб стоки в середине длины от поперечно нагрузки, определяемы как в обычных балках;

f0 = l / 750 - стрелка начального искривления стоки;

β - коэффициент, принимаемы согласно п. 15.6.

15.9. Поперечную силу Q в сжато-изгибаемых и шарнирно-опертых стоках сквозного сечения, постоянного по длине, в опорах с оттяжками следует принимать постоянно по длине стоки и определять по формуле

,                                    (155)

где Qmax - максимальная поперечная сила от внешне нагрузки.

Остальные обозначения в формуле (155) приняты такими, как в формуле (154).

15.10*. Расчет на усточивость сжатых стержне конструкци из одиночных уголков следует выполнять, как правило, с учетом эксцентричного приложения продольных сил.

Допускается рассчитывать эти стержни как центрально-сжатые по формуле (7) при условии умножения продольных сил на коэффициенты αm и αd, принимаемые не менее 1,0.

В пространственных болтовых конструкциях по рис. 9* (кроме рис. 9*, в и концевых опор) при центрировании в узлах стержне из одиночных равнополочных уголков по их рискам при однорядном расположении болтов в элементах решетки и прикреплении раскосов в узле с двух сторон полки пояса значения коэффициентов αm и αd определяются:

для поясов с   3,5 (при  > 3,5 следует принимать  = 3,5) по формулам:

при 0,55 c / b ≤ 0,66 и Nmd / Nm 0,7

αm = 1+ [c / b - 0,55 +  (0,2 - 0,05)]Nmd / Nm;                               (156)*

при 0,4 c / b < 0,55 и Nmd / Nm (2,33c / b - 0,58)

αm = 0,95 + 0,1c / b + [0,34 - 0,62c / b +  (0,2 - 0,05)]Nmd / Nm;                (156, a)

для раскосов (с отношением расстояния по полке уголка раскоса от обушка до риски, на которо установлены болты, к ширине полки уголка раскоса, равном от 0,54 до 0,60), примыкающих к рассчитываемо панели пояса, по формулам:

при 0,55 c / b ≤ 0,66 и Nmd / Nm 0,7

αd = 1,18 - 0,36c / b + (1,18c / b - 0,86)Nmd / Nm;                               (157)*

при 0,4 c / b < 0,55 и Nmd / Nm (2,33c / b - 0,58)

αd = 1 - 0,04c / b + [0,36 - 0,41c / b)Nmd / Nm;                                (157, a)

Для пространственных болтовых конструкци по рис. 9*, г, д, е в формулах (156, а) и (157, а) следует принимать 0,45 c / b < 0,55.

В пространственных сварных конструкциях из одиночных равнополочных уголков по рис. 9*, б, г (кроме концевых опор) с прикреплением раскосов в узле только с внутренне стороны полки пояса при Nmd / Nm ≤ 0,7 значения коэффициентов αm и αd принимаются:

при центрировании в узлах стержне по центрам тяжести сечени αm = αd = 1,0;

при центрировании в узлах осе раскосов на обушок пояса αm = αd = 1 + 0,12Nmd / Nm.

При расчете конструкци на совместное дествие вертикальных и поперечных нагрузок и крутящего момента, вызванного обрывом проводов или тросов, допускается принимать αm = αd = 1,0.

Обозначения, принятые в формулах (156)* - (157, а) для определения αm и αd:

с - расстояние по полке уголка пояса от обушка до риски, на которо расположен центр узла;

b - ширина полки уголка пояса;

 - условная гибкость пояса;

Nm - продольная сила в панели пояса;

Nmd - сумма проекци на ось пояса усили в раскосах, примыкающих к одно полке пояса, передаваемая на него в узле и определяемая при том же сочетании нагрузок, как для Nm; при расчете пояса принимается большее из значени Nmd, полученных для узлов по концам панели, в при расчете раскосов - для узла, к которому примыкает раскос.

15.11*. Гибкость первого снизу раскоса из одиночного уголка решетчато свободно стояще стоки не должна превышать 160.

15.12. Отклонения верха опор и вертикальные прогибы траверс не должны превышать значени, приведенных в табл. 45.

15.13. В стальных конструкциях опор ВЛ и ОРУ из одиночных уголков диафрагмы следует располагать не реже чем через 15 м, а также в местах приложения сосредоточенных нагрузок и переломов поясов.

15.14*. В одноболтовых соединениях элементов решетки (раскосов и распорок) кроме постоянно работающих на растяжение при толщине полки до 6 мм из стале с пределом текучести до 380 МПа (3900 кг / см2) расстояние от края элемента до центра отверстия вдоль усилия допускается принимать 1,35d (где d - диаметр отверстия) без допуска в сторону уменьшения при изготовлении элементов, о чем должно быть указано в проекте. При этом в расчете на смятие соединяемых элементов коэффициент услови работы γb соединения в формуле (128) следует принимать равным 0,65.

В одноболтовых соединениях элементов, постоянно работающих на растяжение (тяг траверс, элементов, примыкающих к узлам крепления проводов и тросов, и в местах крепления оборудования), расстояние от края элемента до центра отверстия вдоль усилия следует принимать не менее 2d.

15.15. Раскосы, прикрепляемые к поясу болтами в одном узле, должны располагаться, как правило, с двух сторон полки поясного уголка.

15.16. В болтовых стыках поясных равнополочных уголков число болтов в стыке следует назначать четным и распределять болты поровну между полками уголка.

Количество болтов при однорядном и шахматном их расположении, а также количество поперечных рядов болтов при двухрядном их расположении следует назначать не более пяти на одно полке уголка с каждо стороны от стыка.

16. ДОПОЛНИТЕЛЬНЫЕ ТРЕБОВАНИЯ ПО ПРОЕКТИРОВАНИЮ КОНСТРУКЦИЙ АНТЕННЫХ СООРУЖЕНИЙ (АС) СВЯЗИ ВЫСОТОЙ до 500 м

16.1. При проектировании АС следует предусматривать:

снижение аэродинамического сопротивления сооружения и отдельных его элементов;

рациональное распределение усили в элементах конструкци путем использования предварительного напряжения;

совмещение несущих и радиотехнических функци.

16.2*. Для конструкци АС следует, как правило, применять стали в соответствии с табл. 50* (кроме стале С390К, С590, С590К) и табл. 51, а.

16.3. Для оттяжек и элементов антенных полотен следует применять стальные канаты круглые оцинкованные по группе СС, грузовые нераскручивающиеся одинарно свивки (спиральные) или нераскручивающиеся двоно крестово свивки с металлическим сердечником (круглопрядные), при этом спиральные канаты должны применяться при расчетных усилиях до 325 кН (33 тс). В канатах следует применять стальную круглую канатную проволоку наибольших диаметров марки 1. Для средне- и сильноагрессивных сред допускаются канаты, оцинкованные по группе ЖС, с требованиями для канатов группы СС. Допускается применение раскручивающихся канатов при удлинении на 25 % обвязок из мягко оцинкованно проволоки по концам канатов.

Таблица 45

Конструкции и направление отклонения

Относительные отклонения стоек (к высоте h)

Относительные прогибы траверс (к длине пролета или консоли)

вертикальные

горизонтальные

в пролете

на консоли

в пролете

на консоли

1. Концевые и угловые опоры ВЛ анкерного типа высото до 60 м вдоль проводов

1/120

1/200

1/70

Не ограничиваются

2. Опоры ВЛ анкерного типа высото до 60 м вдоль проводов

1/100

1/200

1/70

То же

3. Промежуточные опоры ВЛ (кроме переходных) вдоль проводов

Не ограничиваются

1/150

1/50

«

4. Переходные опоры ВЛ всех типов высото свыше 60 м вдоль проводов

1/140

1/200

1/70

«

5. Опоры ОРУ вдоль проводов

1/100

1/200

1/70

1/200

1/70

6. То же, поперек проводов

1/70

Не ограничиваются

7. Стоки опор под оборудование

1/100

-

 

-

-

8. Балки под оборудование

-

1/300

1/250

-

-

Примечания: 1 . Отклонения опор ОРУ и траверс опор ВЛ в аварином и монтажном режимах не нормируются.

2. Отклонения и прогибы по поз. 7 и 8 должны быть уменьшены, если техническими условиями на эксплуатацию оборудования установлены более жесткие требования.

Для оттяжек со встроенными изоляторами орешкового типа следует применять стальные канаты с неметаллическими сердечниками, если это допускается радиотехническими требованиями.

Для оттяжек с усилиями, превышающими несущую способность канатов из кругло проволоки, допускается применение стальных канатов закрытого типа из зетобразных и клиновидных оцинкованных проволок.

16.4. Концы стальных канатов в стаканах или муфтах следует закреплять заливко цинковым сплавом ЦАМ9-1,5Л по ГОСТ 21437-75*.

16.5. Для элементов антенных полотен следует применять провода по табл. 64. Применение медных проволок допускается только в случаях технологическо необходимости.

16.6. Значение расчетного сопротивления (усилия) растяжению проводов и проволок следует принимать равным значению разрывного усилия, установленному государственными стандартами, деленному на коэффициент надежности по материалу γm:

а) для алюминиевых и медных проводов γm = 2,5;

б) для сталеалюминиевых проводов при номинальных сечениях, мм2:

16 и 25            γm = 2,8;

35-95              γm = 2,5;

120 и более    γm = 2,2;

в) для биметаллических сталемедных проволок γm = 2,0.

16.7. При расчетах конструкци АС следует принимать коэффициенты услови работы, установленные разд. 4* и 11, а также по табл. 46.

Таблица 46

Элементы конструкци

Коэффициенты услови работы γc

Предварительно напряженные элементы решетки

0,90

Фланцы:

 

кольцевого типа

1,10

остальных типов

0,90

Стальные канаты оттяжек мачт или элементы антенных полотен при их количестве:

 

3-5 оттяжек в ярусе или элементов антенных полотен

0,80

6-8 оттяжек в ярусе

0,90

9 оттяжек и более в ярусе

0,95

Заделка концов на коуше зажимами или точечное опрессование во втулке

0,75

Оплетка каната на коуше или изоляторе

0,55

Элементы крепления оттяжек, антенных полотен, проводов, подкосов к опорным конструкциям и анкерным фундаментам

0,90

Анкерные тяжи без резьбовых соединени при работе их на растяжение с изгибом

0,65

Проушины при работе на растяжение

0,65

Детали креплени и соединени стальных канатов:

 

механические, кроме осе шарниров

0,80

оси шарниров при смятии

0,90

16.8. Относительные отклонения опор не должны превышать значени, указанных в табл. 47, кроме отклонени опор, для которых установлены иные значения техническим заданием на проектирование.

16.9. При динамическом расчете опоры массу закрепленного к опоре антенного полотна учитывать не следует.

Таблица 47

Вид нагружения

Относительные отклонения (к высоте)

Ветровая или гололедная нагрузка

1/100

Односторонне подвешенные к опоре антенны при отсутствии ветра

1/300

16.10. Значения ветрово и гололедно нагрузок допускается принимать на высоте середины ярусов ствола мачты или в двух третях высоты подвеса гибкого элемента (оттяжки) и считать эти значения равномерно распределенными по длине яруса или элемента.

16.11. Сосредоточенные силы в пролете оттяжек мачт от массы изоляторов, ветрово и гололедно нагрузок на них допускается принимать как равномерно распределенную нагрузку, эквивалентную по значению балочного момента.

16.12. При расчете наклонных элементов АС (оттяжек мачт, элементов антенных полотен, подкосов) следует учитывать только проекцию дествующих на них нагрузок, направленную перпендикулярно оси элемента или его хорде.

16.13. Мачты с оттяжками должны быть рассчитаны на усточивость в целом и их отдельных элементов при следующих нагрузках:

от монтажного натяжения оттяжек при отсутствии ветра;

ветрово - в направлении на одну из оттяжек;

гололедно - при отсутствии ветра;

гололедно и ветрово - в направлении на одну из оттяжек.

При проверке усточивости мачты в целом расчетная сила в стволе должна быть менее критическо силы в 1,3 раза.

16.14. В проекте должны указываться значения монтажных натяжени в канатах оттяжек при среднегодово температуре воздуха в раоне установки мачты, а также при температуре ±40 °С.

16.15*. Монтажные соединения элементов конструкци, передающие расчетные усилия, следует проектировать, как правило, на болтах класса точности В и высокопрочных болтах без регулируемого натяжения. При знакопеременных усилиях следует, как правило, принимать соединения на высокопрочных болтах или на монтажно сварке.

Во фланцевых соединениях следует, как правило, применять высокопрочные болты без регулируемого натяжения.

Применение монтажно сварки или болтов класса точности А должно быть согласовано с монтирующе организацие.

16.16. Раскосы с гибкостью более 250 при перекрестно решетке в местах пересечени должны быть скреплены между собо.

Прогибы распорок диафрагм и элементов технологических площадок в вертикально и горизонтально плоскостях не должны превышать 1/250 пролета.

16.17*. В конструкциях решетчатых опор диафрагмы должны устанавливаться на расстоянии между ними не более трех размеров среднего поперечного сечения секции опоры, а также в местах приложения сосредоточенных нагрузок и переломов поясов.

16.18. Болты фланцевых соединени труб следует размещать на одно окружности минимально возможного диаметра, как правило, на равных расстояниях между болтами.

16.19. Элементы решетки ферм, сходящиеся в одном узле, следует центрировать на ось пояса в точке пересечения их осе. В местах примыкания раскосов к фланцам допускается их расцентровка, но не более чем на треть размера поперечного сечения пояса. При расцентровке на больши размер элементы должны рассчитываться с учетом узловых моментов.

В прорезных фасонках для крепления раскосов из кругло стали конец прорези следует засверливать отверстием диаметром в 1,2 раза больше диаметра раскоса.

16.20. Оттяжки в мачтах с решетчатым стволом следует центрировать в точку пересечения осе поясов и распорок. За условную ось оттяжек должна приниматься хорда.

Листовые проушины для крепления оттяжек должны подкрепляться ребрами жесткости, предохраняющими их от изгиба.

Конструкции узлов крепления оттяжек, которые не вписываются в транспортные габариты секци стволов мачт, следует проектировать на отдельных вставках в стволе в виде жестких габаритных диафрагм.

16.21. Опорная секция мачты должна, как правило, выполняться передающе нагрузку от ствола мачты на фундамент через опорны шарнир. При соответствующем обосновании допускается применение опорно секции, защемленно в фундаменте.

16.22. Кронштены и подвески технологических площадок следует располагать в узлах основных конструкци ствола.

16.23. Натяжные устроства (муфты), служащие для регулировки длины и закрепления оттяжек мачт, должны крепиться к анкерным устроствам гибко канатно вставко. Длина канатно вставки между торцами втулок должна быть не менее 20 диаметров каната.

16.24. Для элементов АС следует применять типовые механические детали, прошедшие испытания на прочность и усталость.

Резьба на растянутых элементах должна приниматься по стандартам СТ СЭВ 180-75, СТ СЭВ 181-75, СТ СЭВ 182-75 (исполнение впадины резьбы с закруглением).

16.25. В оттяжках мачт, на проводах и канатах горизонтальных антенных полотен для гашения вибрации следует предусматривать последовательную установку парных низкочастотных (1-2,5 Гц) и высокочастотных (4-40 Гц) виброгасителе рессорного типа. Низкочастотные гасители следует выбирать в зависимости от частоты основного тона оттяжки, провода или каната. Расстояние s до места подвески гасителе от концево заделки каната следует определять по формуле

,

где d - диаметр каната, провода, мм;

т - масса 1 м каната, провода, кг;

Р -  предварительное натяжение в канате, проводе, Н (кгс);

β -  коэффициент, равны 0,00041 при натяжении Р, Н, или 0,0013 при натяжении Р, кгс.

Высокочастотные гасители устанавливаются выше низкочастотных на расстоянии s. При пролетах проводов и канатов антенных полотен, превышающих 300 м, гасители следует устанавливать независимо от расчета.

Для гашения колебани типа «галопирование» следует изменять свободную длину каната (провода) поводками.

16.26*. Антенные сооружения радиосвязи необходимо окрашивать чередующимися полосами цветомаркировки согласно требованиям по маркировке и светоограждению высотных препятстви в соответствии с Наставлением по аэродромно службе в гражданско авиации СССР.

16.27. Механические детали оттяжек, арматуры изоляторов, а также метизы, как правило, должны быть оцинкованными.

17. ДОПОЛНИТЕЛЬНЫЕ ТРЕБОВАНИЯ ПО ПРОЕКТИРОВАНИЮ ГИДРОТЕХНИЧЕСКИХ СООРУЖЕНИЙ РЕЧНЫХ

17.1*. Для конструкци гидротехнических сооружени следует, как правило, применять стали в соответствии с табл. 50* (кроме стале С590, С590К) и табл. 51, а, а также сталь марки 16Д по ГОСТ 6713-75* при соответствующем технико-экономическом обосновании.

17.2. При расчетах стальных конструкци речных гидротехнических сооружени следует принимать коэффициенты услови работы, установленные разд. 4* и 11, а также по табл. 48.

17.3. Стальные конструкции, не подвергающиеся воздествию водно среды, следует проектировать в соответствии с требованиями разд. 1-12.

При расчете конструкци, подвергающихся воздествию водно среды, следует принимать коэффициенты надежности в соответствии с требованиями СНиП по проектированию гидротехнических сооружени.

17.4*. Расчет на выносливость троников и развилок трубопроводов допускается производить согласно требованиям разд. 9, если в задании на проектирование оговорено наличие пульсирующе составляюще давления потока в трубопроводе.

Таблица 48

Элементы конструкци

Коэффициенты услови работы γс при сочетаниях нагрузок

основных

особых

1. Элементы трубопроводов, кроме обшивок плоских заглушек, при расчете на внутреннее давление без учета местных напряжени

0,70

0,95

2. То же, кроме плоских заглушек без балочно клетки, при расчете на внутреннее давление с учетом местных напряжени

1,10

1,5

3. Заглушки трубопроводов плоские без балочно клетки при расчете на внутреннее давление

0,55

0,7

4. Элементы трубопроводов при расчете на внешнее давление:

 

 

оболочки прямолиненых участков и колен

0,80

0,9

кольца жесткости

0,65

0,75

5. Анкеры плоских облицовок

0,85

-

Расчет на выносливость элементов, подверженных двухосному растяжению, допускается производить более точными методами с учетом фактического напряженного состояния.

17.5. Плоские облицовки затворных камер и водоводов следует рассчитывать на прочность при:

давлении свежеуложенного бетона и цементного раствора, инъектируемого за облицовку;

фильтрационном давлении воды в заоблицовочном бетоне с учетом давления воды в водоводе.

17.6. Рабочие пути под колесные и катковые затворы следует рассчитывать на прочность при изгибе и местном смятии поверхносте катания, при местном сжатии стенки, при сжатии бетона под подошво.

17.7. Трубопроводы с изменяющимися по длине диаметрами должны быть разделены на участки с постоянным диаметром. Переход от одного диаметра трубы к другому должен выполняться коническими обечаками или звеньями.

18. ДОПОЛНИТЕЛЬНЫЕ ТРЕБОВАНИЯ ПО ПРОЕКТИРОВАНИЮ БАЛОК С ГИБКОЙ СТЕНКОЙ

18.1*. Для разрезных балок с гибко стенко симметричного двутаврового сечения, несущих статическую нагрузку и изгибаемых в плоскости стенки, следует, как правило, применять стали с пределом текучести до 430 МПа (4400 кгс/см2).

Рис. 22. Схема балки с гибко стенко

18.2*. Прочность разрезных балок симметричного двутаврового сечения, несущих статическую нагрузку, изгибаемых в плоскости стенки, укрепленно только поперечными ребрами жесткости (рис. 22), с условно гибкостью стенки 6 ≤   13 следует проверять по формуле

(M / Mu)4 + (Q / Qu)4 ≤ 1,                                                  (158)

где М и Q - значения момента и поперечно силы в рассматриваемом сечении балки;

Мu - предельное значение момента, вычисляемое по формуле

;                                          (159)

Qu - предельное значение поперечно силы, вычисляемое по формуле

.                                        (160)

В формулах (159) и (160) обозначено:

t и h - толщина и высота стенки;

Af - площадь сечения пояса балки;

τcr и μ - критическое напряжение и отношение размеров отсека стенки, определяемые в соответствии с п. 7.4*;

β - коэффициент, вычисляемы по формулам:

при α 0,03                                        β = 0,05 + 5α ≥ 0,15;                                            (161)

при 0,03 < α0,1                               β = 0,11 + 3α0,40.                                            (162)

Здесь ,

где Wmin -     минимальны момент сопротивления таврового сечения, состоящего из сжатого пояса балки и примыкающего к нему участка стенки высото 0,5t (относительно собственно оси тавра, параллельно поясу балки);

а -  шаг ребер жесткости.

18.3. Поперечные ребра жесткости, сечение которых следует принимать не менее указанных в п. 7.10, должны быть рассчитаны на усточивость как стержни, сжатые сило N, определяемо по формуле

,                                                 (163)

где все обозначения следует принимать по п. 18.2*.

Значение N следует принимать не менее сосредоточенно нагрузки, расположенно над ребром.

Расчетную длину стержня следует принимать равно lef = h (1 - β), но не менее 0,7h.

Симметричное двустороннее ребро следует рассчитывать на центральное сжатие, одностороннее - на внецентренное сжатие с эксцентриситетом, равным расстоянию от оси стенки до центра тяжести расчетного сечения стержня.

В расчетное сечение стержня следует включать сечение ребра жесткости и полосы стенки ширино 0,65t с каждо стороны ребра.

18.4. Участок стенки балки над опоро следует укреплять двусторонним опорным ребром жесткости и рассчитывать его согласно требованиям п. 7.12.

На расстоянии не менее ширины ребра и не более 1,3t от опорного ребра следует устанавливать дополнительное двустороннее ребро жесткости размером согласно п. 18.3.

18.5. Усточивость балок не следует проверять при выполнении требования п. 5.16*, а настоящих норм либо при расчетно длине lef ≤ 0,21 bf (где bf - ширина сжатого пояса).

18.6. Отношение ширины свеса сжатого пояса к его толщине должно быть не более 0,38.

18.7*. Местное напряжение σloc в стенке балки, определяемое по формуле (31), должно быть не более 0,75Ry, при этом значение lef следует вычислять по формуле (146).

18.8*. При определении прогиба балок момент инерции поперечного сечения брутто балки следует уменьшать умножением на коэффициент α = 1,2 - 0,033 для балок с ребрами в пролете и на коэффициент α = 1,2 - 0,033 - h / l - для балок без ребер в пролете.

18.9*. В балках по п. 18.1* с условно гибкостью стенки 7   10 при дествии равномерно распределенно нагрузки или при числе сосредоточенных одинаковых нагрузок в пролете 5 и более, расположенных на равных расстояниях друг от друга и от опор, допускается не укреплять стенку в пролете поперечными ребрами по рис. 22, при этом нагрузка должна быть приложена симметрично относительно плоскости стенки.

Прочность таких балок следует проверять по формуле

,                                         (163, а)

где δ - коэффициент, учитывающи влияние поперечно силы на несущую способность балки и определяемы по формуле δ = 1- 5,6Afh / (Awl).

При этом следует принимать tf ≥ 0,3t и 0,025 ≤ Afh / (Awl) ≤ 0,1.

19. ДОПОЛНИТЕЛЬНЫЕ ТРЕБОВАНИЯ ПО ПРОЕКТИРОВАНИЮ БАЛОК С ПЕРФОРИРОВАННОЙ СТЕНКОЙ

19.1*. Балки с перфорированно стенко следует проектировать из прокатных двутавровых балок, как правило, из стали с пределом текучести до 530 МПа (5400 кгс/см2).

Сварные соединения стенок следует выполнять стыковым швом с полным проваром.

19.2. Расчет на прочность балок, изгибаемых в плоскости стенки (рис. 23), следует выполнять по формулам табл. 49.

19.3. Расчет на усточивость балок следует выполнять согласно требованиям п. 5.15, при этом геометрические характеристики необходимо вычислять для сечения с отверстием.

Усточивость балок не следует проверять при m выполнении требовани п. 5.16*.

19.4. В опорных сечениях стенку балок при hef / t > 40 (где t - меньшая толщина стенки) следует укреплять ребрами жесткости и рассчитывать согласно требованиям п. 7.12, при этом у опорного сечения следует принимать с250 мм (рис. 23)

19.5. В сечениях балки при отношении  или при невыполнении требовани п. 5.13 следует устанавливать ребра жесткости в соответствии с требованиями п. 7.10.

Сосредоточенные грузы следует располагать только в сечениях балки, не ослабленных отверстиями.

Высота стенки сжатого таврового сечения должна удовлетворять требованиям п. 7.18* настоящих норм, в формуле (91)* которого следует принимать  = 1,4.

19.6. При определении прогиба балок с отношением l / hef 12 (где l - пролет балки) момент инерции сечения балки с отверстием следует умножать на коэффициент 0,95.

Рис. 23. Схема участка балки с перфорированно стенко

Таблица 49

Формулы для расчета на прочность сечени балки (рис. 23)

 

верхнего таврового

нижнего таврового

опорного

Точка 1

Точка 3

Точка 2

Точка 4

Обозначения, принятые в табл. 49:

М - изгибающи момент в сечении балки;

Q1 и Q2 - поперечные силы, воспринимаемые тавровыми сечениями и равные  и ,

где Q - поперечная сила в сечении балки;

J1 и J2 - моменты инерции верхнего и нижнего тавровых сечени относительно собственных осе, параллельных полкам;

Q3 - поперечная сила в сечении балки на расстоянии (с + s - 0,5a) от опоры (рис. 23);

Jx - момент инерции сечения балки с отверстием относительно оси х-х;

W1,max и W1,min - наибольши и наименьши моменты сопротивления верхнего таврового сечения;

W2,max и W2,min - то же нижнего таврового сечения;

Ry1, Ru1, Ry2, Ru2 - расчетные сопротивления проката для верхнего и нижнего тавровых сечени.

20*. ДОПОЛНИТЕЛЬНЫЕ ТРЕБОВАНИЯ ПО ПРОЕКТИРОВАНИЮ КОНСТРУКЦИЙ ЗДАНИЙ И СООРУЖЕНИЙ ПРИ РЕКОНСТРУКЦИИ

20.1*. Расчетные сопротивления проката и труб конструкци следует назначать в соответствии с п. 3.1*. При этом значение предела текучести стали Ryn и временного сопротивления Run следует принимать:

для стале, у которых приведенные в сертификатах или полученные при испытаниях значения предела текучести и временного сопротивления соответствуют требованиям дествовавших во время строительства государственных стандартов или технических услови на сталь - по минимальному значению, указанному в этих документах;

для стале, у которых приведенные в сертификатах или полученные при испытаниях значения предела текучести и временного сопротивления ниже предусмотренных государственными стандартами или техническими условиями на сталь, дествовавшими во время строительства, - по минимальному значению предела текучести из приведенных в сертификатах или полученных при испытаниях.

Коэффициент надежности по материалу следует принимать:

для конструкци, изготовленных до 1932 г., и для стале, у которых полученные при испытаниях значения предела текучести ниже 215 МПа (2200 кгс/см2), γm = 1,2;

для конструкци, изготовленных в период с 1932 по 1982 г., - γm = 1,1 для стале с пределом текучести до 380 МПа (3850 кгс/см2) и γm = 1,15 для стале с пределом текучести свыше 380 МПа (3850 кгс/см2);

для конструкци, изготовленных после 1982 г., - по табл. 2 и табл. 49,a1.

Допускается назначать расчетные сопротивления по значениям Ryn и Run, определенным по результатам статистическо обработки данных испытани не менее чем 10 образцов в соответствии с указаниями прил. 8, а.

20.2. Оценку качества материалов следует производить по данным заводских сертификатов или по результатам испытани образцов. Испытания следует выполнять при отсутствии исполнительно документации или сертификатов, при недостаточности имеющихся в них сведени или обнаружении повреждени, которые могли быть вызваны низким качеством материалов.

20.3. Определение при испытаниях показателе качества металла, отбор проб для химического анализа и образцов для механических испытани и их число следует производить в соответствии с указаниями прил. 8, а.

20.4. Допускается не производить испытания металла конструкци, предназначенных для эксплуатации, при напряжениях до 165 МПа (1700 кгс/см2) и расчетных температурах выше минус 30 °С для конструкци группы 3, выше минус 40 °С - для конструкци группы 4, выше минус 65 °С - для конструкци групп 3 и 4 при их усилении без применения сварки.

20.5. Расчетные сопротивления сварных соединени конструкци, подлежащих реконструкции или усилению, следует назначать с учетом марки стали, сварочных материалов, видов сварки, положения шва и способов их контроля, примененных в конструкции.

При отсутствии установленных нормами необходимых данных допускается:

для угловых швов принимать Rwun = Run; γwm = 1,25; βf = 0,7 и βz = 1,0, считая при этом γc = 0,8;

для растянутых стыковых швов принимать Rwy = 0,55Ry для конструкци, изготовленных до 1972 г., и Rwy = 0,85Ry - после 1972 г.

Допускается уточнять несущую способность сварных соединени по результатам испытани образцов, взятых из конструкции.

20.6. Расчетные сопротивления срезу и растяжению болтов, а также смятию элементов, соединяемых болтами, следует определять согласно п. 3.5; если невозможно установить класс прочности болтов, значения расчетных сопротивлени следует принимать как для болтов класса прочности 4.6 при расчете на срез и класса прочности 4.8 при расчете на растяжение.

20.7. Расчетные сопротивления заклепочных соединени следует принимать по табл. 49, а.

Если в исполнительно документации отсутствуют указания о способе обработки отверсти и материале заклепок и установить их не представляется возможным, расчетные сопротивления следует принимать по табл. 49, а как для соединения на заклепках группы С из стали марки Ст2.

20.8. Конструкции, эксплуатируемые при положительно температуре и изготовленные из кипяще малоуглеродисто стали, а также из других стале, у которых по результатам испытани значения ударно вязкости ниже гарантированных государственными стандартами по категория метали для групп конструкци в соответствии с табл. 50*, не подлежат усилению или замене при условии, что напряжения в элементах из этих стале не будут превышать значени, имевшихся до реконструкции. Решение об использовании, усилении или замене этих конструкци, эксплуатация которых будет отличаться от указанных услови, принимается на основании заключения специализированного научно-исследовательского института.

Таблица 49, а

Напряженное состояние

Условное обозначение

Группа соединения

Расчетные сопротивления заклепочных соединени, МПа (кгс/см2)

срезу и растяжению заклепок из стали марок

смятию соединяемых элементов

Ст2, Ст3

09Г2

Срез

Rrs

В

180 (1800)

220 (2200)

-

С

160 (1600)

-

-

Растяжение (отрыв головки)

Rrt

B, C

120 (1200)

150 (1500)

-

Смятие

Rrp

В

-

-

Rrp = 2Ry

С

-

-

Rrp = 1,7Ry

Примечания: 1. К группе В относятся соединения, в которых заклепки поставлены в отверстия, сверленные в собранных элементах или в деталях по кондукторам.

К группе С относятся соединения, в которых заклепки поставлены в продавленные отверстия или в отверстия, сверленные без кондуктора в отдельных деталях.

2. При применении заклепок с потаными или полупотаными головками расчетные сопротивления заклепочных соединени срезу и смятию понижаются умножением на коэффициент 0,8. Работа указанных заклепок на растяжение не допускается.

Таблица 49, а1

Государственны стандарт или технические условия на прокат

Коэффициент надежности по материалу γm

ТУ 14-1-3023-80, ГОСТ 23570-79

1,025

ГОСТ 380-71**, ГОСТ 14637-79*, ГОСТ 19281-73* и ГОСТ 19282-73* [стали с пределом текучести до 380 МПа (39 кгс/мм2) и сталь марки 14Г2АФ]; ТУ 14-1-1217-75

1,050

ГОСТ 19281-73* и ГОСТ 19282-73* [стали с пределом текучести свыше 380 МПа (39 кгс/мм2), кроме стали марки 14Г2АФ]

1,100

ТУ 14-1-1308-75, ТУ 14-1-1772-76

1,150

20.9. Расчетная схема конструкции, сооружения или здания в целом принимается с учетом особенносте их дествительно работы, в том числе с учетом фактических отклонени геометрическо формы, размеров сечени, услови закрепления и выполнения узлов сопряжения элементов.

Проверочные расчеты элементов конструкци и их соединени выполняются с учетом обнаруженных дефектов и повреждени, коррозионного износа, фактических услови сопряжения и опирания. Расчеты элементов могут выполняться по деформированно схеме в соответствии с указаниями п. 1.8, принимая при этом коэффициент услови работы γc = 1,0 для поз. 3, 5 и 6, а табл. 6*.

20.10*. Конструкции, не удовлетворяющие требованиям разд. 5, 7-11, 13 (табл. 40* пп. 13.29-13.43, 13.45) и п. 16.3 настоящих норм, должны быть, как правило, усилены или заменены, за исключением случаев, указанных в данном разделе.

Отклонения от геометрическо формы, размеров элементов и соединени от номинальных, превышающие допускаемые правилами производства и приемки работ, но не препятствующие нормально эксплуатации, могут не устраняться при условии обеспечения несуще способности конструкци с учетом требовани п. 20.9.

20.11. Допускается не усиливать элементы конструкци, если:

их горизонтальные и вертикальные прогибы и отклонения превышают предельные значения, установленные пп. 13.1* и 16.8, но не препятствуют нормально эксплуатации;

их гибкость превышает предельные значения, установленные пп. 6.15* и 6.16*, но элементы имеют искривления, не превышающие значени, установленных правилами производства и приемки работ, и усилия не будут возрастать в процессе дальнеше эксплуатации, а также в тех случаях, когда возможность использования таких элементов проверена расчетом.

20.12*. При разработке проектов реконструкции стальных конструкци здани и сооружени следует выявлять и использовать резервы несуще способности и применять конструктивные решения, позволяющие осуществлять реконструкцию, как правило, без остановки производственного процесса.

При усилении конструкци допускается учитывать: возможность предварительного напряжения и активного регулирования усили, в том числе за счет сварки, изменени конструктивно и расчетно схемы, а также упруго-пластическую работу материала, закритическую работу тонкостенных элементов и обшивок конструкци в соответствии с дествующими нормами.

20.13. Конструкции усиления и методы его выполнения должны предусматривать меры по снижению нежелательных дополнительных деформаци элементов в процессе усиления в соответствии с п. 12.2.

Несущая способность конструкци в процессе выполнения работ по усилению должна обеспечиваться с учетом влияния ослаблени сечени дополнительными отверстиями под болты, а также сварки.

В необходимых случаях в период усиления конструкция должна быть полностью или частично разгружена.

20.14. В конструкциях 2- и 3- групп табл. 50*, эксплуатируемых при расчетно температуре не ниже минус 40 °С в неагрессивных или слабоагрессивных средах, для обеспечения совместно работы детале усиления и существующе конструкции допускается применять прерывистые фланговые швы.

Во всех случаях применения угловых швов следует, как правило, назначать минимально необходимые катеты. Допускается концевые участки швов проектировать с катетом большим, чем катет промежуточных участков, и устанавливать их размеры в соответствии с расчетом.

20.15. При усилении элементов конструкци допускается применять комбинированные соединения на заклепках и высокопрочных болтах или болтах класса точности А.

20.16*. При расчете элементов конструкци, усиленных путем увеличения сечения, следует, как правило, учитывать разные расчетные сопротивления материала конструкции и усиления. Допускается принимать одно расчетное сопротивление, равное меньшему из них, если они отличаются не более чем на 15 %.

При расчете на усточивость сжатых, внецентренножатых и сжато изгибаемых элементов с усиленными сечениями допускается принимать приведенное значение расчетного сопротивления, вычисляемое по формуле

,                                               (163, б)

где Ry - расчетное сопротивление основного металла, определяемое согласно требованиям п. 20.1;

k1, k2 - коэффициенты, вычисляемые по формулам:

,                                    (163, в)

здесь Rya -   расчетное сопротивление металла усиления;

A, I - соответственно площадь и момент инерции сечения усиливаемого элемента относительно оси, перпендикулярно плоскости проверки усточивости;

Аtot, Itot -  то же, усиленного элемента в целом.

20.17. Расчет на прочность и усточивость элементов, усиленных способом увеличения сечени, следует, как правило, выполнять с учетом напряжени, существовавших в элементе в момент усиления (с учетом разгрузки конструкци). При этом необходимо учитывать начальные искривления элементов, смещение центра тяжести усиленного сечения и искривления, вызванные сварко.

Искривления от сварки при проверке усточивости сжатых и внецентренножатых элементов и элементов, работающих на сжатие с изгибом, допускается учитывать введением дополнительного коэффициента услови работы γс = 0,8.

Проверку на прочность элементов, рассчитанных в соответствии с п. 20.16 как для однородного сечения [кроме расчета по формулам (39), (40) и (49) норм], допускается выполнять на полное расчетное усилие без учета напряжени, существовавших до усиления, а при проверке стенок на местную усточивость допускается использовать коэффициент услови работы γс = 0,8.

20.18*. Допускается не усиливать существующие стальные конструкции, выполненные с отступлением от требовани пп. 12.8, 12.13, 12.19*, 13.5, 13.6, 13.9*, 13.14, 13.16, 13.19*, 13.25, 13.27, 13.46*, 15.11*, 15.13, 16.15*-16.18, 16.23 при условии, что:

отсутствуют вызванные этими отступлениями повреждения элементов конструкци;

исключены изменения в неблагоприятную сторону услови эксплуатации конструкци;

несущая способность и жесткость обоснованы расчетом с учетом требовани пп. 20.9, 20.11 и 20.15;

выполняются мероприятия по предупреждению усталостного и хрупкого разрушения конструкци, на которые распространяются указания пп. 9.1, 9.3 и разд. 10.

ПРИЛОЖЕНИЕ 1

МАТЕРИАЛЫ ДЛЯ СТАЛЬНЫХ КОНСТРУКЦИЙ И ИХ РАСЧЕТНЫЕ СОПРОТИВЛЕНИЯ

Таблица 50*

Стали для стальных конструкци здани и сооружени

Сталь

ГОСТ или ТУ

Категория стали для климатического раона строительства (расчетная температура, °С)

II4 (-30 > t ≥ - 40); II5 и др. (t -30)

I2, II2 и II3 (-40 > t ≥ -50)

I1 (-50 > t -65)

Группа 1. Сварные конструкции либо их элементы, работающие в особо тяжелых условиях или подвергающиеся непосредственному воздествию динамических, вибрационных или подвижных нагрузок [подкрановые балки; балки рабочих площадок; элементы конструкци бункерных и разгрузочных эстакад, непосредственно воспринимающих нагрузку от подвижных составов; фасонки ферм; пролетные строения транспортерных галере; сварные специальные опоры больших переходов лини электропередачи (ВЛ) высото более 60 м; элементы оттяжек мачт и оттяжечных узлов; балки под краны гидротехнических сооружени и т.п.].

С255

ГОСТ 27772-88

+

-

-

С285

+

-

-

С345

3

3

4а)

С375

3

3

4а)

С390

+

+

+б)

С390К

+

+

+б)

С440

+

+б)

+в)

Группа 2. Сварные конструкции либо их элементы, работающие при статическо нагрузке ермы; ригели рам; балки перекрыти и покрыти; косоуры лестниц; опоры ВЛ, за исключением сварных опор больших переходов; опоры ошиновки открытых распределительных устроств подстанци (ОРУ); опоры под выключатели ОРУ; опоры транспортерных галере; элементы контактно сети транспорта (штанги, анкерные оттяжки, хомуты); прожекторные мачты; элементы комбинированных опор антенных сооружени; трубопроводы ГЭС и насосных станци; облицовки водоводов; закладные части затворов и другие растянутые, растянуто-изгибаемые и изгибаемые элементы], а также конструкции и их элементы группы 1 при отсутствии сварных соединени и балки подвесных путе из двутавров по ГОСТ 19425-74* и ТУ 14-2-427-80 при наличии сварных монтажных соединени.

С245

ГОСТ 27772-88

+г)

-

-

С255

+

-

-

С275

+г)

-

-

С285

+

-

-

С345

1

3

4а,д)

С34

+

-

-

С375

1

3

4а,д)

С390

+

+

+б)

С390К

+

+

+б)

С440

+

+

+в)

С590

+

-

-

С590К

-

+

+

ВСт3кп толщино до 4 мм

ГОСТ 10705-80*, группа В, табл. 1

2е)

2е)

-

ВСт3пс толщино до 5,5 мм

То же

2е)

-

-

ВСт3пс толщино 6-10 мм

«

6

-

-

16Г2АФ толщино 6-9 мм

ТУ 14-3-567-76

+

+

+

Группа 3. Сварные конструкции либо их элементы, работающие при статическо нагрузке [колонны; стоки; опорные плиты; элементы настила перекрыти; конструкции, поддерживающие технологическое оборудование; вертикальные связи по колоннам с напряжением, в связях свыше 0,4Ry; анкерные, несущие и фиксирующие конструкции (опоры, ригели жестких поперечин, фиксаторы) контактно сети транспорта; опоры под оборудование ОРУ, кроме опор под выключатели; элементы стволов и башен антенных сооружени; колонны бетоновозных эстакад, прогоны покрыти и другие сжатые и сжато-изгибаемые элементы], а также конструкции и их элементы группы 2 при отсутствии сварных соединени.

С235

ГОСТ 27772-88

+е)

-

-

С245

+

-

-

С255

+

+ж)

-

С275

+

-

-

С285

+

+ж)

-

С345

1

1

2 или 3

С345К

+

+

-

С375

1

1

2 или 3

С390

+

+

+

С390К

+

+

+

С440

+

+

+

С590

+

-

-

С590К

-

+

+

ВСт3кп толщино до 4 мм

ГОСТ 10705-80*, группа В, табл. 1

2е)

2е)

-

ВСт3кп толщино 4,5-10 мм

То же

2е)

-

-

ВСт3пс толщино 5-15 мм

ГОСТ 10706-76*, группа В, с доп. требованием по п. 1.6

4

-

-

ВСт3пс толщино до 5,5 мм

ГОСТ 10705-80*, группа В, табл. 1

2е)

2е)

-

ВСт3пс толщино 6-10 мм

ГОСТ 10705-80*, группа В, табл. 1

6

-

-

ВСт3сп толщино 5-15 мм

ГОСТ 10706-76*, группа В, с доп. требованием по п. 1.6

-

4

-

ВСт3сп толщино 6-10 мм

ГОСТ 10705-80*, группа В, табл. 1

-

5

-

16Г2АФ толщино 6-9 мм

ТУ 14-3-567-76

+

+

+

Группа 4. Вспомогательные конструкции здани и сооружени (связи, кроме указанных в группе 3; элементы фахверка; лестницы; трапы; площадки; ограждения; металлоконструкции кабельных каналов; второстепенные элементы сооружени и т.п.), а также конструкции и их элементы группы 3 при отсутствии сварных соединени.

С235

ГОСТ 27772-88

+

-

-

С245

-

+

+

С255

-

+

+

С275

-

+

+

С285

-

+

+

ВСт3кп толщино до 4 мм

ГОСТ 10705-80*, группа В, табл. 1

2е)

2е)

2е)

ВСт3кп толщино 4,5-10 мм

То же

2е)

-

-

ВСт3пс толщино 5-15 мм

ГОСТ 10706-76*, группа В, с доп. требованием по п.1.6

4

4

-

ВСт3пс толщино до 5,5 мм

ГОСТ 10705-80*, группа В, табл. 1

2е)

2е)

2е)

ВСт3пс толщино 6-10 мм

То же

6

6

-

Обозначения, принятые в табл. 50*:

а) фасонны прокат толщино до 11 мм, а при согласовании с изготовителем - до 20 мм; листово - всех толщин;

б) требование по ограничению углеродного эквивалента по ГОСТ 27772-88 для толщин свыше 20 мм;

в) требование по ограничению углеродного эквивалента по ГОСТ 27772-88 для всех толщин;

г) для раона II4 для неотапливаемых здани и конструкци, эксплуатируемых при температуре наружного воздуха, применять прокат толщино не более 10 мм;

д) при толщине проката не более 11 мм допускается применять сталь категории 3;

е) кроме опор ВЛ, ОРУ и КС;

ж) прокат тол шино до 10 мм и с учетом требовани разд. 10;

и) кроме раона II4 для неотапливаемых здани и конструкци, эксплуатируемых при температуре наружного воздуха. Знак «+» означает, что данную сталь следует применять; знак «-» означает, что данную сталь в указанном климатическом раоне применять не следует.

Примечания: 1. Требования настояще таблицы не распространяются на стальные конструкции специальных сооружени, магистральные и технологические трубопроводы, резервуары специального назначения, кожухи доменных пече и воздухонагревателе и т.п. Стали для этих конструкци устанавливаются соответствующими СНиП или другими нормативными документами.

2. Требования настояще таблицы распространяются на листово прокат толщино от 2 мм и фасонны прокат толщино от 4 мм по ГОСТ 27772-88, сортово прокат (круг, квадрат, полоса) по ТУ 14-1-3023-80, ГОСТ 380-71**(с 1990 г. ГОСТ 535-88) и ГОСТ 19281-73*. Указанные категории стали относятся к прокату толщино не менее 5 мм. При толщине менее 5 мм приведенные в таблице стали применяются без требовани по ударно вязкости.

Для конструкци всех групп, кроме группы 1 и опор ВЛ и ОРУ, во всех климатических раонах, кроме I1, допускается применять прокат толщино менее 5 мм из стали С235 по ГОСТ 27772-88.

3. Климатические раоны строительства устанавливаются в соответствии с ГОСТ 16350-80 «Климат СССР. Раонирование и статистические параметры климатических факторов для технических целе». Указанные в головке таблицы в скобках расчетные температуры соответствуют температуре наружного воздуха соответствующего раона, за которую принимается средняя температура наиболее холодно пятидневки согласно указаниям СНиП по строительно климатологии и геофизике.

4. К конструкциям, подвергающимся непосредственному воздествию динамических, вибрационных или подвижных нагрузок, относятся конструкции либо их элементы, подлежащие расчету на выносливость или рассчитываемые с учетом коэффициентов динамичности.

5. При соответствующем технико-экономическом обосновании стали С345, С375, С440, С590, С590К, 16ГФ могут заказываться как стали повышенно коррозионно стокости (с медью) - С345Д, С375Д, С440Д, С590Д, С590КД, 16Г2АФД.

6. Применение термоупрочненного с прокатного нагрева фасонного проката из стали С345Т и С375Т, поставляемого по ГОСТ 27772-88 как сталь С345 и С375, не допускается в конструкциях, которые при изготовлении подвергаются металлизации или пластическим деформациям при температуре выше 700 °С.

7. Бесшовные горячедеформированные трубы по ГОСТ 8731-87 допускается применять только для элементов специальных опор больших переходов лини электропередачи высото более 60 м, для антенных сооружени связи и других специальных сооружени, при этом следует применять марки стали:

во всех климатических раонах, кроме I1, I2, II2 и II3, марку 20 по ГОСТ 8731-87, но с дополнительным требованием по ударно вязкости при температуре минус 20 °С не менее 30 Дж / см2 (3 кгс · м/см2);

в климатических раонах I2, II2 и II3, - марку 09Г2С по ГОСТ 8731-87, но с дополнительным требованием по ударно вязкости при температуре минус 40 °С не менее 40 Дж / см2 (4 кгс · м/см2) при толщине стенки до 9 мм и 35 Дж / см2 (3,5 кгс · м/см2) при толщине стенки 10 мм и более.

Не допускается применять бесшовные горячедеформированные трубы, изготовленные из слитков, имеющих маркировку с литером «Л», не прошедшие контроль неразрушающими методами.

8. К сортовому прокату (круг, квадрат, полоса) по ТУ 14-1-3023-80, ГОСТ 380-71** 1990 г. ГОСТ 535-88) и ГОСТ 19281-73* предъявляются такие же требования, как к фасонному прокату тако же толщины по ГОСТ 27772-88. Соответствие марок стале по ТУ 14-1-3023-80, ГОСТ 380-71 ГOCT 19281-73* и ГОСТ 19282-73* сталям по ГОСТ 27772-88 следует определять по табл. 51, б, б.

Таблица 51*

Нормативные и расчетные сопротивления при растяжении, сжатии и изгибе листового, широкополосного универсального и фасонного проката по ГОСТ 27772-88 для стальных конструкци здани и сооружени

Сталь

Толщина проката1 , мм

Нормативное сопротивление2, МПа (кгс/мм2), проката

Расчетное сопротивление3, МПа (кгс/см2), проката

листового, широкополосного универсального

фасонного

листового, широкополосного универсального

фасонного

Ryn

Run

Ryn

Run

Ry

Ru

Ry

Ru

С235

От   2   до   20

235 (24)

360 (37)

235 (24)

360 (37)

230 (2350)

350 (3600)

230 (2350)

350 (3600)

Св.  20 «     40

225 (23)

360 (37)

225 (23)

360 (37)

220 (2250)

350 (3600)

220 (2250)

350 (3600)

   «   40 «     100

215 (22)

360 (37)

-

-

210 (2150)

350 (3600)

-

-

   «   100

195 (20)

360 (37)

-

-

190 (1950)

350 (3600)

-

-

С245

От   2   до   20

245 (25)

370 (38)

245 (25)

370 (38)

240 (2450)

360 (3700)

240 (2450)

360 (3700)

Св.  20 «     30

-

-

235 (24)

370 (38)

-

-

230 (2350)

360 (3700)

С255

От   2   до   3,9

255 (26)

380 (39)

-

-

250 (2550)

370 (3800)

-

-

   «   4   «     10

245 (25)

380 (39)

255 (26)

380 (39)

240 (2450)

370 (3800)

250 (2550)

370 (3800)

Св.  10 «     20

245 (25)

370 (38)

245 (25)

370 (38)

240 (2450)

360 (3700)

240 (2450)

360 (3700)

   «   20 «     40

235 (24)

370 (38)

235 (24)

370 (38)

230 (2350)

360 (3700)

230 (2350)

360 (3700)

С275

От   2   до   10

275 (28)

380 (39)

275 (28)

390 (40)

270 (2750)

370 (3800)

270 (2750)

380 (3900)

Св.  10 «     20

265 (27)

370 (38)

275 (28)

380 (39)

260 (2650)

360 (3700)

270 (2750)

370 (3800)

С285

От   2   до   3,9

285 (29)

390 (40)

-

-

280 (2850)

380 (3900)

-

-

   «   4   «     10

275 (28)

390 (40)

285 (29)

400 (41)

270 (2750)

380 (3900)

280 (2850)

390 (4000)

Св.  10 «     20

265 (27)

380 (39)

275 (28)

390 (40)

260 (2650)

370 (3800)

270 (2750)

380 (3900)

С345

От   2   до   10

345 (35)

490 (50)

345 (35)

490 (50)

335 (3400)

480 (4900)

335 (3400)

480 (4900)

Св.  10 «     20

325 (33)

470 (48)

325 (33)

470 (48)

315 (3200)

460 (4700)

315 (3200)

460 (4700)

   «   20 «     40

305 (31)

460 (47)

305 (31)

460 (47)

300 (3050)

450 (4600)

300 (3050)

450 (4600)

   «   40 «     60

285 (29)

450 (46)

-

-

280 (2850)

440 (4500)

-

-

   «   60 «     80

275 (28)

440 (45)

-

-

270 (2750)

430 (4400)

-

-

   «   80 «     160

265 (27)

430 (44)

-

-

260 (2650)

420 (4300)

-

-

С345К

От   4   до   10

345 (35)

470 (48)

345 (35)

470 (48)

335 (3400)

460 (4700)

335 (3400)

460 (4700)

С375

От   2   до   10

375 (38)

510 (52)

375 (38)

510 (52)

365 (3700)

500 (5100)

365 (3700)

500 (5100)

Св.  10 «     20

355 (36)

490 (50)

355 (36)

490 (50)

345 (3500)

480 (4900)

345 (3500)

480 (4900)

   «   20 «     40

335 (34)

480 (49)

335 (34)

480 (49)

325 (3300)

470 (4800)

325 (3300)

470 (4800)

С390

От   4   до   50

390 (40)

540 (55)

-

-

380 (3850)

530 (5400)

-

-

С390К

От   4   до   30

390 (40)

540 (55)

-

-

380 (3850)

530 (5400)

-

-

С440

От   4   до   30

440 (45)

590 (60)

-

-

430 (4400)

575 (5850)

-

-

Св.  30 «     50

410 (42)

570 (58)

-

-

400 (4100)

555 (5650)

-

-

С590

От   10 до   36

540 (55)

635 (65)

-

-

515 (5250)

605 (6150)

-

-

С590К

От   16 до   40

540 (55)

635 (65)

-

-

515 (5250)

605 (6150)

-

-

1 За толщину фасонного проката следует принимать толщину полки (минимальная его толщина 4 мм).

2 За нормативное сопротивление приняты нормативные значения предела текучести и временного сопротивления по ГОСТ 27772-88.

3 Значения расчетных сопротивлени получены делением нормативных сопротивлени на коэффициенты надежности по материалу, определенные в соответствии с п. 3.2*, с округлением до 5 МПа (50 кгс/см2).

Примечание. Нормативные и расчетные сопротивления из стали повышенно коррозионно стокости (см. примеч. 5 к табл. 50*) следует принимать такими же, как для соответствующих стале без меди.

Таблица 51, а

Нормативные и расчетные сопротивления при растяжении, сжатии и изгибе труб для стальных конструкци здани и сооружени

Марка стали

ГОСТ или ТУ

Толщина стенки, мм

Нормативное сопротивление1 МПа (кгс/мм2)

Расчетное сопротивление2, МПа (кгс/см2)

Ryn

Run

Ry

Ru

ВСт3кп, ВСт3пс, ВСт3сп

ГОСТ 10705-80*

До 10

225 (23,0)

370 (38,0)

215 (2200)

350 (3550)

ВСт3пс, ВСт3сп

ГОСТ 10706-76*

5-15

245 (25,0)

370 (38,0)

235 (2400)

350 (3550)

20

ГОСТ 8731-87

4-36

245 (25,0)

410 (42,0)

225 (2300)

375 (3800)

16Г2АФ

ТУ 14-3-567-76

6-9

440 (45,0)

590 (60,0)

400 (4100)

535 (5450)

1 За нормативные сопротивления приняты минимальные значения предела текучести и временного сопротивления, приводимые в государственных общесоюзных стандартах или технических условиях, МПа (кгс/мм2). В тех случаях, когда эти значения в государственных общесоюзных стандартах или технических условиях приведены только в одно системе единиц - (кгс/мм2), нормативные сопротивления, МПа, вычислены умножением соответствующих величин на 9,81 с округлением до 5 МПа.

2 Значения расчетных сопротивлени получены делением нормативных сопротивлени, МПа, на коэффициенты надежности по материалу, определяемые в соответствии с п. 3.2*, с округлением до 5 МПа; значения расчетных сопротивлени, кгс/см2 получены делением расчетных сопротивлени, МПа, на 0,0981.

Примечание. Нормативные сопротивления труб из стали марки 09Г2С по ГОСТ 8731-87 устанавливаются по соглашению сторон в соответствии с требованиями указанного стандарта; расчетные сопротивления - согласно п. 3.2 настоящих норм.

Таблица 51, б

Марки стали, заменяемые сталями по ГОСТ 27772-88

Стали по ГОСТ 27772-88

Заменяемая марка стали

ГОСТ или ТУ

С235

ВСт3кп2

ГОСТ 380-71**

ВСт3кп2-1

ТУ 14-1-3023-80

18кп

ГОСТ 23570-79

С245

ВСт3пс6 (листово прокат толщино до 20 мм, фасонны - до 30 мм)

ГОСТ 380-71**

ВСт3пс6-1

ТУ 14-1-3023-80

18пс

ГОСТ 23570-79

С255

ВСт3сп5, ВСт3Гпс5, ВСт3пс6 (листово прокат толщино св. 20 до 40 мм, фасонны - св. 30 мм),

ГОСТ 380-71**

ВСт3сп5-1, ВСт3Гпс5-1,

ТУ 14-1-3023-80

1п, 18Гпс, 18Гсп

ГОСТ 23570-79

С275

ВСт3пс6-2

ТУ 14-1-3023-80

С285

ВСт3сп5-2, ВСт3Гпс5-2

ТУ 14-1-3023-80

С345, С34

09Г2

ГОСТ 19281-73*,

ГОСТ 19282-73*

02С, 14Г2 (листово, фасонны прокат толщино до 20 мм), 15ХСНД (листово прокат толщино до 10 мм, фасонны - до 20 мм)

ГОСТ 19282-73*

12Г2С гр. 1

ТУ 14-1-4323-88

09Г2 гр. 1, 09Г2 гр. 2, 09Г2С гр. 1, 14Г2 гр. 1 (фасонны - до 20 мм)

ТУ 14-1-3023-80

390

ТУ 14-15-146-85

ВСтТпс

ГОСТ 14637-79*

С345К

10ХНДП

ГОСТ 19281-73*,

ГОСТ 19282-73*,

ТУ 14-1-1217-75

С375, С375Т

02С гр. 2

ТУ 14-1-3023-80

12Г2С гр. 2

ТУ 14-1-4323-88

14Г2 гр. 1 (фасонны прокат толщино св. 20 мм), 14Г2 гр. 2 (фасонны прокат толщино до 20 мм)

ТУ 14-1-3023-80

14Г2 (фасонны и листово прокат толщино св. 20 мм), 10Г2С1, 15ХСНД (фасонны прокат толщино св. 20 мм, листово - св. 10 мм), 10ХСНД (фасонны прокат без ограничения толщины, листово - толщино до 10 мм)

ГОСТ 19281-73*,

ГОСТ 19282-73*

С390, С390Т

14Г2АФ, 10Г2С1 термоупрочненная, 10ХСНД (листово прокат толщино св. 10 мм)

ГОСТ 19282-73*

С390К

15ГФДпс

ГОСТ 19282-73*

С440

16Г2АФ, 18Г2АФпс, 15Г2СФ термоупрочненная

ГОСТ 19282-73*

С590

12Г2СМФ

ТУ 14-1-1308-75

С590К

12ГН2МФАЮ

ТУ 14-1-1772-76

Примечания: 1. Стали С345 и С375 категори 1, 2, 3, 4 по ГОСТ 27772-88 заменяют стали категори соответственно 6, 7 и 9, 12, 13 и 15 по ГОСТ 19281-73* и ГОСТ 19282-73*.

2. Стали С345К, С390, С390К, С440, С590, С590К по ГОСТ 27772-88 заменяют соответствующие марки стали категори 1-15 по ГОСТ 19281-73* и ГОСТ 19282-73*, указанные в настояще таблице.

3. Замена стале по ГОСТ 27772-88 сталями, поставляемыми по другим государственным общесоюзным стандартам и техническим условиям, не предусмотрена.

Таблица 52*

Расчетные сопротивления проката смятию торцево поверхности, местному смятию в цилиндрических шарнирах, диаметральному сжатию катков

Временное сопротивление проката, МПа (кгс/мм2)

Расчетные сопротивления, МПа (кгс/см2)

смятию

диаметральному сжатию катков (при свободном касании в конструкциях с ограниченно подвижностью)

торцево поверхности (при наличии пригонки)

местному в цилиндрических шарнирах (цапфах) при плотном касании

360 (37)

327 (3340)

164 (1660)

8 (80)

365 (37)

332 (3360)

166 (1680)

8 (80)

370 (38)

336 (3460)

168 (1730)

8 (80)

380 (39)

346 (3550)

173 (1780)

9 (90)

390 (40)

355 (3640)

178 (1820)

9 (90)

400 (41)

364 (3720)

182 (1860)

10 (100)

430 (44)

391 (4000)

196 (2000)

10 (100)

440 (45)

400 (4090)

200 (2050)

10 (100)

450 (46)

409 (4180)

205 (2090)

10 (100)

460 (47)

418 (4270)

209 (2140)

10 (100)

470 (48)

427 (4360)

214 (2180)

11 (110)

480 (49)

436 (4450)

218 (2230)

11 (110)

490 (50)

445 (4550)

223 (2280)

11 (110)

500 (51)

455 (4640)

228 (2320)

11 (110)

510 (52)

464 (4730)

232 (2370)

12 (120)

520 (53)

473 (4820)

237 (2410)

12 (120)

530 (54)

473 (4820)

237 (2410)

12 (120)

540 (55)

482 (4910)

241 (2460)

12 (120)

570 (58)

504 (5130)

252 (2570)

13 (130)

590 (60)

522 (5310)

261 (2660)

13 (130)

635 (65)

578 (5870)

289 (2940)

14 (140)

Примечание. Значения расчетных сопротивлени получены по формулам разд. 3 настоящих норм при γm = 1,1.

Таблица 53

Расчетные сопротивления отливок из углеродисто стали

Напряженное состояние

Условное обозначение

Расчетные сопротивления, МПа (кгс/см2), отливок из углеродисто стали марок

15Л

25Л

35Л

45Л

Растяжение, сжатие и изгиб

Ru

150 (1500)

180 (1800)

210 (2100)

250 (2500)

Сдвиг

Rs

90 (900)

110 (1100)

130 (1300)

150 (1500)

Смятие торцево поверхности (при наличии пригонки)

Rp

230 (2300)

270 (2700)

320 (3200)

370 (3700)

Смятие местное в цилиндрических шарнирах (цапфах) при плотном касании

Rlp

110 (1100)

130 (1300)

160 (1600)

180 (1800)

Диаметральное сжатие катков при свободном касании (в конструкциях с ограниченно подвижностью)

Rcd

6 (60)

7 (70)

8 (80)

10 (100)

Таблица 54

Расчетные сопротивления отливок из серого чугуна

Напряженное состояние

Условное обозначение

Расчетные сопротивления, МПа (кгс/см2), отливок из серого чугуна марок

СЧ 15

СЧ 20

СЧ 25

СЧ 30

Растяжение центральное и при изгибе

Rt

55 (550)

65 (650)

85 (850)

100 (1000)

Сжатие центральное и при изгибе

Rc

160 (1600)

200 (2000)

230 (2300)

250 (2500)

Сдвиг

Rs

40 (400)

50 (500)

65 (650)

75 (750)

Смятие торцево поверхности (при наличии пригонки)

Rp

240 (2400)

300 (3000)

340 (3400)

370 (3700)

ПРИЛОЖЕНИЕ 2

МАТЕРИАЛЫ ДЛЯ СОЕДИНЕНИЙ СТАЛЬНЫХ КОНСТРУКЦИЙ И ИХ РАСЧЕТНЫЕ СОПРОТИВЛЕНИЯ

Таблица 55*

Материалы для сварки, соответствующие стали

Группы конструкци в климатических раонах

Стали

Материалы для сварки

под флюсом

в углекислом газе (по ГОСТ 8050-85) или в его смеси с аргоном (по ГОСТ 10157-79*)

покрытыми электродами типов по ГОСТ 9467-75*

Марки

флюсов (по ГОСТ 9087-81*)

сварочно проволоки (по ГОСТ 2246-70*)

2, 3 и 4 - во всех раонах, кроме I1, I2, II2 и II3

С235, С245, С255, С275, С285, 20, ВСт3кп, ВСт3пс, ВСт3сп

АН-348, АН-60

Св-08А, Св-0А

СВ-08Г2С

Э42, Э46

С345, С345Т, С375, С375Т, С390, С390Т, С390К, С440, 16Г2АФ, 0

АН-47, АН-43, АН-17-М, АН-348-А1

Св-10НМА, Св-10Г22, Св-08ГА2, Св-10ГА2

Э50

С34

АН-348-А

Св-08Х1ДЮ

Св-08ХГ2СДЮ

Э50А3

1 - во всех раонах; 2, 3 и 4 - в раонах I1, I2, II2 и II3

С235, С245, С255, С275, С285, 20, ВСт3кп, ВСт3пс, ВСт3сп

АН-348-А

Св-08А, СВ-08ГА

СВ-08Г

Э42А, Э46А

С345, С345Т, С375, С375Т, 0

АН-47, АН-43, АН-348-А1

Св-10НМА, Св-10Г22, Св-08ГА2, Св-10ГА2

Э50А

С390, С390Т, С390К, С440, 16Г2АФ

АН-47, АН-17-М, АН-348-А1

Св-10НМА, Св-10Г22, Св-08ГА2, Св-10ГА2

Э50А

С34

АН-348-А

Св-08Х1ДЮ

Св-08ХГ2СДЮ

Э50А3

С590, С590К, С590КШ

АН-17-М

Св-08ХН2ГМЮ, Св-10НМА

Св-10ХГ2СМА, Св-08ХГСМА, Св-08Г2С

Э60, Э70

1 Применение флюса АН-348-А требует проведения дополнительного контроля механических своств металла шва при сварке соединени элементов всех толщин для конструкци в климатических раонах I1, I2, II2 и II3 и толщин свыше 32 мм - в остальных климатических раонах.

2 Не применять в сочетании с флюсом АН-43.

3 Применять только электроды марок ОЗС-18 и КД-11.

Примечания: 1. Проволока марки Св-08Х1ДЮ поставляется по ТУ 14-1-1148-75, марки Св-08ХГ2СДЮ - по ТУ 14-1-3665-83.

2. При соответствующем технико-экономическом обосновании для сварки конструкци разрешается использовать сварочные материалы (проволоки, флюсы, защитные газы), не указанные в настояще таблице. При этом механические своства металла шва, выполняемого с их применением, должны быть не ниже своств, обеспечиваемых применением материалов согласно настояще таблице.

Таблица 56

Нормативные и расчетные сопротивления металла швов сварных соединени с угловыми швами

Сварочные материалы

Rwun, Мпа (кгс/см2)

Rwf, МПа (кгс/см2)

тип электрода
(по
ГОСТ 9467-75)

марка проволоки

Э42, Э42А

Св-08, Св-08А

410 (4200)

180 (1850)

Э46, Э46А

Св-08ГА

450 (4600)

200 (2050)

Э50, Э50А

Св-10ГА, Св-08Г2С, Св-08Г2СЦ, ПП-АН8, ПП-АН3

490 (5000)

215 (2200)

Э60

Св-08Г2С*, СВ-08Г2СЦ*, Св-10НМА, Св-10Г2

590 (6000)

240 (2450)

Э70

Св-10ХГ2СМА, СВ-08ХН2ГМЮ

685 (7000)

280 (2850)

Э85

-

835 (8500)

340 (3450)

* Только для швов с катетом kf ≤ 8 мм в конструкциях из стали с пределом текучести 440 МПа (4500 кгс/см2) и более.

Таблица 57*

Требования к болтам при различных условиях их применения

Условия применения

Технологические требования по ГОСТ 1759.4-87*

климатически раон

условия работы болтов

класс прочности (табл. 1)

дополнительные виды испытани (табл. 10)

марка стали болтов

 

В конструкциях, не рассчитываемых на выносливость

Все раоны, кроме I1, I2, II2 и II3**

Растяжение или срез

4.6; 5.6

Поз. 1

По табл. 1

 

4.8; 5.8

То же

То же

 

6.6

«

35

 

8.8

-

35Х; 38ХА

 

10.9

-

40Х

I1, I2, II2 и II3

Растяжение или срез

4.6; 5.6

Поз. 1 и 4

По табл. 1

 

4.8*; 5.8*

Поз. 1

То же

 

8.8

Поз. 3 и 7

35Х; 38ХА

Срез

4.8; 5.8

Поз. 1

По табл. 1

 

8.8

-

35Х; 38ХА

 

10.9

-

40Х

 

В конструкциях, рассчитываемых на выносливость

Все раоны, кроме I1, I2, II2 и II3*

Растяжение или срез

4.6; 5.6

Поз. 1 и 4

По табл. 1

 

6.6

То же

35

 

8.8

-

35Х; 38ХА

Срез

4.8; 5.8

Поз. 1

По табл. 1

I2, II2 и II3

Растяжение или срез

4.6; 5.6

Поз. 1 и 4

По табл. 1

 

8.8

Поз. 3 и 7

35Х; 38ХА

Срез

4.8; 5.8

Поз. 1

По табл. 1

 

8.8

-

35Х; 38ХА

I1

Растяжение или срез

8.8

Поз. 3 и 7

35Х; 38ХА

Срез

4.6; 5.6

Поз. 1 и 4

По табл. 1

 

4.8*; 5.8*

Поз. 1

То же

 

8.8

-

35Х; 38ХА

* Требуется дополнительны последующи отпуск при t = 650 °С.

** А также для конструкци, возводимых в климатических раонах I1, I2, II2 и II3, но эксплуатируемых в отапливаемых помещениях.

Примечания: 1. Во всех климатических раонах, кроме I1, I2, II2 и II3, в нерасчетных соединениях допускается применять болты с подголовком класса точности С и В по ГОСТ 15590-70* и ГОСТ 7795-70* без дополнительных видов испытани, предусмотренных в настояще таблице.

2. При заказе болтов классов прочности 6.6; 8.8; 10.9 по ГОСТ 1759.4-87* следует указывать марки стали.

3. При заказе болтов классов прочности 4.8 и 5.8 необходимо указывать, что применение автоматно стали не допускается.

4. Высокопрочные болты по ГОСТ 22356-77* из стали марки 40Х «селект» без регулируемого натяжения применяются в тех же конструкциях, что и болты класса прочности 10.9.

Таблица 58*

Расчетные сопротивления срезу и растяжению болтов

Напряженное состояние

Условное обозначение

Расчетное сопротивление, МПа (кгс/см2), болтов классов

4.6

4.8

5.6

5.8

6.6

8.8

10.9

Срез

Rbs

150 (1500)

160 (1600)

190 (1900)

200 (2000)

230 (2300)

320 (3200)

400 (4000)

Растяжение

Rbt

170 (1700)

160 (1600)

210 (2100)

200 (2000)

250 (2500)

400 (4000)

500 (5000)

Примечание. В таблице указаны значения расчетных сопротивлени для одноболтовых соединени, вычисленные по формулам разд. 3 настоящих норм с округлением до 5 МПа (50 кгс/см2).

Таблица 59*

Расчетные сопротивления смятию элементов, соединяемых болтами

Временное сопротивление стали соединяемых элементов, МПа (кгс/мм2)

Расчетные сопротивления, МПа (кгс/см2), смятию элементов, соединяемых болтами

класса точности А

классов точности В и С, высокопрочных без регулируемого натяжения

360 (37)

475 (4800)

430 (4350)

365 (37)

485 (4900)

440 (4450)

370 (38)

495 (5100)

450 (4600)

380 (39)

515 (5300)

465 (4800)

390 (40)

535 (5500)

485 (5000)

400 (41)

560 (5750)

505 (5200)

430 (44)

625 (6400)

565 (5800)

440 (45)

650 (6650)

585 (6000)

450 (46)

675 (6900)

605 (6200)

460 (47)

695 (7150)

625 (6400)

470 (48)

720 (7350)

645 (6600)

480 (49)

745 (7600)

670 (6850)

490 (50)

770 (7850)

690 (7050)

500 (51)

795 (8150)

710 (7250)

510 (52)

825 (8400)

735 (7500)

520 (53)

850 (8650)

760 (7750)

530 (54)

875 (8950)

780 (7950)

540 (55)

905 (9200)

805 (8200)

570 (58)

990 (10050)

880 (8950)

590 (60)

1045 (10600)

930 (9450)

Примечание. Значения расчетных сопротивлени получены по формулам разд. 3 настоящих норм с округлением до 5 МПа (50 кгс/см2).

Таблица 60*

Расчетные сопротивления растяжению фундаментных болтов

Диаметр болтов, мм

Расчетные сопротивления, МПа (кгс/см2), болтов из стали марок

ВСт3кп2 по ГОСТ 380-71** 1990 г. ГОСТ 535-88)

09Г2С по ГОСТ 19281-73*

10Г2С1 по ГОСТ 19281-73*

12, 16, 20

185 (1900)

235 (2400)

240 (2450)

24, 30

185 (1900)

230 (2350)

235 (2400)

36, 42, 48, 56

185 (1900)

225 (2300)

225 (2300)

64, 72, 80

185 (1900)

220 (2250)

215 (2200)

90, 100

185 (1900)

215 (2200)

215 (2200)

110, 125, 140

185 (1900)

215 (2200)

-

Примечание. Значения расчетных сопротивлени получены по формулам разд. 3 настоящих норм с округлением до 5 МПа (50 кгс/см2).

Таблица 61*

Механические своства высокопрочных болтов по ГОСТ 22356-77*

Номинальны диаметр резьбы d, мм

Марка стали по ГОСТ 4543-71*

Наименьшее временное сопротивление Rbun, Н / мм2 (кгс/мм2)

От 16 до 27

40Х «селект»

1100 (110)

30Х3МФ, 30Х2НМФА

1350 (135)

30

40Х «селект»

950 (95)

30Х3МФ, 35Х2АФ

1200 (120)

36

40Х «селект»

750 (75)

30Х3МФ

1100 (110)

42

40Х «селект»

650 (65)

30Х3МФ

1000 (100)

48

40Х «селект»

600 (60)

30Х3МФ

900 (90)

Таблица 62*

Площади сечения болтов согласно СТ СЭВ 180-75, СТ СЭВ 181-75 и СТ СЭВ 182-75

d, мм

16

18*

20

22*

24

27*

30

36

42

48

Аb, см2

2,01

2,54

3,14

3,80

4,52

5,72

7,06

10,17

13,85

18,09

Аb, см2

1,57

1,92

2,45

3,03

3,52

439

5,60

8,16

11,20

14,72

* Болты указанных диаметров применять не рекомендуется.

ПРИЛОЖЕНИЕ 3

ФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ МАТЕРИАЛОВ

Таблица 63

Физические характеристики материалов для стальных конструкци

Характеристика

Значение

Плотность ρ, кг / м3:

 

проката и стальных отливок

7850

отливок из чугуна

7200

Коэффициент линеного расширения α, ºC-1

0,12 · 10-4

Модуль упругости Е, МПа (кгс/см2):

 

прокатно стали и стальных отливок

2,06 · 105 (2,1 · 106)

отливок из чугуна марок:

 

СЧ15

0,83 · 105 (0,85 · 106)

СЧ20, СЧ25, СЧ30

0,98 · 105 (1,0 · 106)

пучков и пряде параллельных проволок

1,96 · 105 (2,0 · 106)

канатов стальных:

 

спиральных и закрытых несущих

1,67 · 105 (1,7 · 106)

двоно свивки

1,47 · 105 (1,5 · 106)

двоно свивки с неметаллическим сердечником

1,27 · 105 (1,3 · 106)

Модуль сдвига прокатно стали и стальных отливок G, МПа (кгс/см2)

0,78 · 105 (0,81 · 106)

Коэффициент поперечно деформации (Пуассона) ν

0,3

Примечание. Значения модуля упругости даны для канатов, предварительно вытянутых усилием не менее 60 % разрывного усилия для каната в целом.

Таблица 64

Физические характеристики проводов и проволоки

Наименование материалов

Марка и номинальное сечение, мм2

Модуль упругости Е, МПа (кгс/см2)

Коэффициент линеного расширения α; ºС-1

Алюминиевые провода по ГОСТ 839-80*Е

А, АКП; 16-800

0,630 · 105 (0,642 · 106)

0,23 · 10-4

Медные провода по ГОСТ 839-80*Е

М; 4-800

1,300 · 105 (1,326 · 106)

0,17 · 10-4

Сталеалюминиевые провода по ГОСТ 839-80*Е при отношении площаде алюминия к стали, равном:

АС, АСК; АСКП, АСКС

 

 

6-6,25

10 и более

0,825 · 105 (0,841 · 106)

0,192 · 10-4

0,65

95

1,460 · 105 (1,489 · 106)

0,139 · 10-4

4,29-4,39

120 и более

0,890 · 105 (0,907 · 106)

0,183 · 10-4

7,71-8,04

150 и более

0,770 · 105 (0,785 · 106)

0,198 · 10-4

1,46

185 и более

1,140 · 105 (1,163 · 106)

0,155 · 10-4

12,22

330

0,665 · 105 (0,678 · 106)

0,212 · 10-4

18,2-18,5

400 и 500

0,665 · 105 (0,678 · 106)

0,212 · 10-4

Биметаллическая сталемедная проволока по ГОСТ 3822-79* диаметром, мм:

БСМ 1

 

 

1,6-4

2,0-12,5

1,870 · 105 (1,906 · 106)

0,127 · 10-4

6

28,2

1,900 · 105 (1,937 · 106)

0,124 · 10-4

Примечание. Значение массы проводов и проволоки следует принимать по ГОСТ 839-80*Е и ГОСТ 3822-79*.

ПРИЛОЖЕНИЕ 4*

КОЭФФИЦИЕНТЫ УСЛОВИЙ РАБОТЫ ДЛЯ РАСТЯНУТОГО ОДИНОЧНОГО УГОЛКА, ПРИКРЕПЛЯЕМОГО ОДНОЙ ПОЛКОЙ БОЛТАМИ

Коэффициент услови работы γc при расчете на прочность сечени по формуле (6) в местах крепления элементов из одиночных уголков, прикрепляемых одно полко болтами, поставленными в один ряд, при расстояниях вдоль усилия от края элемента до центра ближашего отверстия а 1,5d и между центрами отверсти b 2d (здесь d - диаметр отверстия для болта) с пределом текучести до 380 МПа (3900 кгс/см2) следует определять по формуле

,                                                   (164)*

где Аn -   площадь сечения уголка нетто;

An1 -  площадь части сечения прикрепляемо полки уголка между краем отверстия и пером;

α1 и α2 -  коэффициенты, определяемые по табл. 65 при расстояниях от оси установки болтов до обушка уголка не менее 0,5b и до пера не менее 1,2d (здесь b - ширина полки уголка, d - диаметр отверстия для болта).

При вычислении значени Аn, An1 и d следует учитывать положительны допуск на диаметр отверстия d.

Для одноболтовых соединени при расстоянии вдоль усилия от края элемента до центра болта 2d a1,35d коэффициент услови работы γc в формуле (6) следует определять по формуле

,                                        (165)

где β = 1 при а = 2d; β = 0,85 при a = 1,5d и β = 0,65 при a = 1,35d.

Таблица 65

Коэффициенты α1 и α2

Коэффициент

Значения α1 и α2 при количестве болтов в ряду

2

3

4

5

α1

1,82

1,49

1,20

0,87

α2

0,195

0,37

0,48

0,61

Коэффициенты услови работы γc, установленные в настоящем приложении и в поз. 5 табл. 6*, одновременно не учитываются.

ПРИЛОЖЕНИЕ 5

КОЭФФИЦИЕНТЫ ДЛЯ РАСЧЕТА НА ПРОЧНОСТЬ ЭЛЕМЕНТОВ СТАЛЬНЫХ КОНСТРУКЦИЙ С УЧЕТОМ РАЗВИТИЯ ПЛАСТИЧЕСКИХ ДЕФОРМАЦИЙ

Таблица 66

Коэффициенты с(сх), су, п

Тип сечения

Схема сечения

Значения коэффициентов

c(cx)

cy

n при My = 0*

1

0,25

1,19

1,47

1,5

0,5

1,12

1,0

1,07

2,0

1,04

2

0,5

1,40

1,47

2,0

1,0

1,28

2,0

1,18

3

0,25

1,19

1,07

1,5

0,5

1,12

1,12

1,0

1,07

1,19

2,0

1,04

1,26

4

0,5

1,40

1,12

2,0

1,0

1,28

1,20

2,0

1,18

1,31

5

-

1,47

1,47

а) 2,0

б) 3,0

6

0,25

1,47

1,04

3,0

0,5

1,07

1,0

1,12

2,0

1,19

7

-

1,26

1,26

1,5

8

-

1,60

1,47

а) 3,0

б) 1,0

9

0,5

1,60

1,07

а) 3,0

б) 1,0

1,0

1,12

2,0

1,19

* При Му 0  n = 1,5, за исключением сечени типа 5а, для которого п = 2 и типа 5б, для которого n = 3.

Примечание. При определении коэффициентов для промежуточных значени Af / Aw допускается линеная интерполяция.

ПРИЛОЖЕНИЕ 6

КОЭФФИЦИЕНТЫ ДЛЯ РАСЧЕТА НА УСТОЙЧИВОСТЬ ЦЕНТРАЛЬНО-, ВНЕЦЕНТРЕННО-СЖАТЫХ И СЖАТО-ИЗГИБАЕМЫХ ЭЛЕМЕНТОВ

ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТОВ РАСЧЕТНОЙ ДЛИНЫ КОЛОНН

Одноступенчатые колонны

Коэффициенты расчетно длины μ1 для нижнего участка одноступенчато колонны следует принимать в зависимости от отношения  и величины  (где J1, J2, l1, l2 - моменты инерции сечени и длины соответственно нижнего и верхнего участков колонны (рис. 24) и ):

Рис. 24. Схема одноступенчато колонны

при верхнем конце, свободном от всяких закреплени, - по табл. 67;

при верхнем конце, закрепленном от поворота, и при возможности его свободного смещения - по табл. 68.

При неподвижном верхнем конце, шарнирно-опертом или закрепленном от поворота, значения коэффициента μ1 для нижнего участка колонны следует определять по формуле

,                                                    (166)

где μ12 - коэффициент расчетно длины нижнего участка при F1 = 0;

μ11 - коэффициент расчетно длины нижнего участка при F2 = 0.

Значения коэффициентов μ12 и μ11 следует принимать:

при шарнирно-опертом верхнем конце - по табл. 69;

при неподвижном верхнем конце, закрепленном от поворота, - по табл. 70.

Коэффициенты расчетно длины μ2 для верхнего участка колонны во всех случаях следует определять по формуле

μ2 = μ1 / α1 ≤ 3.                                                        (167)


Таблица 67

Коэффициенты расчетно длины μ1 для одноступенчатых колонн с верхним свободным концом

Расчетная схема

α1

Коэффициенты μ1 при п

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

1,2

1,4

1,6

1,8

2,0

2,5

5,0

10,0

20,0

0

2,0

2,0

2,0

2,0

2,0

2,0

2,0

2,0

2,0

2,0

2,0

2,0

2,0

2,0

2,0

2,0

2,0

2,0

2,0

2,0

0,2

2,0

2,01

2,02

2,03

2,04

2,05

2,06

2,06

2,07

2,08

2,09

2,10

2,12

2,14

2,15

2,17

2,21

2,40

2,76

3,38

0,4

2,0

2,04

2,08

2,11

2,13

2,18

2,21

2,25

2,28

2,32

2,35

2,42

2,48

2,54

2,60

2,66

2,80

-

 

-

0,6

2,0

2,11

2,20

2,28

2,36

2,44

2,52

2,59

2,66

2,73

2,80

2,93

3,05

3,17

3,28

3,39

-

-

-

-

0,8

2,0

2,25

2,42

2,56

2,70

2,83

2,96

3,07

3,17

3,27

3,36

3,55

3,74

-

-

Индекс цитирования сата компании ГРАН-Стро Статистика сата Металлоконструкции, лестницы, входные группы и театральные декорации от компании ГРАН-Стро Ретинг@Mail.ru сата Металлоконструкции, лестницы, входные группы и театральные декорации от компании ГРАН-Стро Rambler's Top100 сата Металлоконструкции, лестницы, входные группы и театральные декорации от компании ГРАН-Стро
Лестница.RU - Всё о лестницах и ограждениях Ваш Дом в Перми - все для строительства и ремонта РосФирм. Россиски бизнес портал - каталог и справочник предприяти, организаци, фирм, компани. Металлоконструкции, лестницы, входные группы и театральные декорации от компании ГРАН-Стро Металлоконструкции строительного назначения от компании УралСтальМонтаж-Пермь Жилая недвижимость Перми от агентства недвижимости АВЕНЮ
Hosted by uCoz